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ABSTRACT. Here, the complex problem of structure based identification of
XML document is treated. This identification can have strict rules that should
apply without exception. In addition, one can envision rules that are not strict,
but probabilistic by nature. In fact, any complex system should be aware of
the problem that error may occur and may propagate at any time instant.

The approach assumes a backing rule-based system, which can analyze the
XML documents, validate and subtract error—free parts of the XML document
and pass the uncertain parts for further analysis. Such uncertain parts could
be, e.g., tags, attributes, and texts. The structure of the XML document
may be uncertain, too. Our work concerns this last example. We assume
a distribution of XML trees and perform probabilistic classification of these
trees given a set of examples. We show on artificial as well as on real XML
databases that efficient classification is possible for XML documents. The
artificial database allows us to rigorously vary parameters of the distributions,
whereas XML databases from the internet provide realistic examples. We show
examples on how one can optimize the probability estimation of the correctness
of a document having structure, given the database.

For the sake of completeness, the general case of novelty detection is also
considered. The report is meant as a thorough, up-to-date description of re-
cent software and Al technologies, which can be applied for the evaluation,
identification and validation of XML documents. We also present results on
how to speed-up the rule-based validation. Such fast methods could be applied
to solve the rule-based part of the XML validation problem.

The report contains a description of the internet crawler technology that
was part of the project and was used to collect documents, including XML

documents over the internet.
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LisT oF FIGURES

1 Logistics of XML identification
Every rule-based system, which is of help, should be applied.
Cross-validated parts of the XML documents should be
eliminated. The remaining part of the XML document is the
‘difference’. Differences may appear in tags, in attributes, in the
text itself, and in the tree structure. All of these ‘differences’
should be analyzed to estimate its the probabilities. Outputs of
these analyzers may be considered as ‘expert opinions’ and may
serve a further stage that make a decision about the document.
This stage could apply — beyond others — mixture of expert

and/or product of experts strategy for estimation. 27

2 Modeling results
The figures show the probabilities approximated by Probabilistic
Tree Models
(a) Model-1 on its training samples from 1st dataset
(b) Model-1 on unseen samples from the same dataset
(c) Model-1 on 2nd dataset generated from different distribution
(d) Model-2 on its training samples from 2nd dataset
(e) Model-2 on unseen samples from 2nd dataset

Model parameters: Training set size:30 samples, Branching
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ratio:4, Depth of tree:4, 1st dataset: Datl, 2nd dataset: Dat2

(for generative parameters of artificial datasets see Table 11.3)

Modeling results

For definition of sub-figures (a)-(e) see fig. 2

Model parameters: Training set size:30 samples, Branching
ratio:4, Depth of tree:4, 1st dataset: Dat2, 2nd dataset: Datl

(for generative parameters of artificial datasets see Table 11.3)

Modeling results

For definition of sub-figures (a)-(e) see fig. 2

Model parameters: Training set size:30 samples, Branching
ratio:4, Depth of tree:4, 1st dataset: Dat2, 2nd dataset: Datb

(for generative parameters of artificial datasets see Table 11.3)

Modeling results

For definition of sub-figures (a)-(e) see fig. 2

Model parameters: Training set size:30 samples, Branching
ratio:4, Depth of tree:4, 1st dataset: Dat3, 2nd dataset: Dat4

(for generative parameters of artificial datasets see Table 11.3)

Modeling results
For definition of sub-figures (a)-(e) see fig. 2

Model parameters: Training set size:30 samples, Branching

45

46

47

48
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ratio:4, Depth of tree:4, 1st dataset: Dat3, 2nd dataset: Datb

(for generative parameters of artificial datasets see Table 11.3) 49

7 Modeling results
For definition of sub-figures (a)-(e) see fig. 2
Model parameters: Training set size:30 samples, Branching
ratio:4, Depth of tree:4, 1st dataset: Dat4, 2nd dataset: Datb

(for generative parameters of artificial datasets see Table 11.3) 50

8 Modeling results
For definition of sub-figures (a)-(e) see fig. 2
Model parameters: Training set size:30 samples, Branching
ratio:4, Depth of tree:4, 1st dataset: Datb, 2nd dataset: Dat2

(for generative parameters of artificial datasets see Table 11.3) 51

9 Modeling results
For definition of sub-figures (a)-(e) see fig. 2
Model parameters: Training set size:30 samples, Branching
ratio:4, Depth of tree:4, 1st dataset: Datd, 2nd dataset: Dat4

(for generative parameters of artificial datasets see Table 11.3) 52

10 Optimized novelty detection
Misclassified samples vs. accepting threshold value.
Model parameters: Training set size:150 samples, Branching

ratio:3, Depth of tree:4, ”Familiar” dataset: Datl, ” Novelty”
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dataset: Dat2 (for generative parameters of artificial datasets

see Table 11.3) 53

11 Optimized novelty detection
Misclassified samples vs. accepting threshold value.
Model parameters: Training set size:150 samples, Branching
ratio:3, Depth of tree:4, ” Familiar” dataset: Dat2, ” Novelty”
dataset: Dat3 (for generative parameters of artificial datasets

see Table 11.3) 54

12 Optimized novelty detection
Misclassified samples vs. accepting threshold value.
Model parameters: Training set size:150 samples, Branching
ratio:3, Depth of tree:4, ”Familiar” dataset: Dat4, ” Novelty”
dataset: Dat2 (for generative parameters of artificial datasets

see Table 11.3) 55

13 Optimized novelty detection
Misclassified samples vs. accepting threshold value.
Model parameters: Training set size:150 samples, Branching
ratio:3, Depth of tree:4, ”Familiar” dataset: Dat4, ” Novelty”
dataset: Datb (for generative parameters of artificial datasets

see Table 11.3) 56
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14 Optimized novelty detection
Misclassified samples vs. accepting threshold value.
Model parameters: Training set size:150 samples, Branching
ratio:3, Depth of tree:5, ” Familiar” dataset: Dat4, ” Novelty”
dataset: Datb (for generative parameters of artificial datasets

see Table 11.3)

15 Optimized novelty detection
Misclassified samples vs. accepting threshold value.
Model parameters: Training set size:150 samples, Branching
ratio:3, Depth of tree:4, ”Familiar” dataset: Dat4, ” Novelty”
dataset: Garbage (for generative parameters of artificial

datasets see Table 11.3)

16 Optimized novelty detection
Misclassified samples vs. accepting threshold value.
Model parameters: Training set size:150 samples, Branching
ratio:3, Depth of tree:5, ”Familiar” dataset: ADC, ” Novelty”
dataset: Garbage (for generative parameters of artificial

datasets see Table 11.3)

17 Traffic example
Hexagonal windows of 169 pixels in different positions

(hexagonal areas in subfigure A) were used for creating the

13

a7

98

99



14 XML AND NOVELTY

familiar and unfamiliar data sets. (B) Distributions of TICA
outputs. 7 inputs were concatenated to form an embedded
input. Diagonal (off-diagonal) histograms describe testing for
familiar (novel) inputs. The negentropy (N) values [30] of the
histograms (discretizations of the rectified distributions) are

given within each subfigure.

18 The case of acoustic signals.

(A) Samples are about 250 ms in length and are from different
sources (e.g. music, sounds in a forest or sounds of a whale).
(B) TIC output distributions. The training set for the TICA
matrix was created from a mix of three samples out of the six
signals. Mixing of the other three samples made the 'novel’
inputs. Embedding depth is 16. The number of TICs is thus
3x16=48. Here - in contrast to Figure 17 - the histograms
of randomly selected individual outputs are shown. Diagonal
(off-diagonal) blocks of histograms represent familiar (novel)

tests.

19 Graphical representation of the algorithm.
(A): x,s,h and %: input, shrunk (denoised) ICA components,
hidden variables, and reconstructed input, respectively.

W, W*, Q and Iyyr denote demixing matrix, pseudoinverse

81

82
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of the demixing matrix, NMF matrix and NMF iteration,
respectively. Arrow: linear transformation, arrow with black
dot: linear transformation with component-wise non-linearity
(shrinkage kernel), lines with two arrow-heads: iteration. The
algorithm was utilized in a two phase mode (see text for
details).

(B): h: reconstructed input of second layer (i.e., hidden
variables of first layer ‘according to’ the second layer).
Two-layer hierarchy. Lower layers provide inputs (their hidden
variables h) for higher layers. Reconstructed input of second
layer overruns hidden variables at first layers. Hidden variables
are subject to NMF iteration. Grey arrows represent identity

transformations (7). 88

20 Input and its reconstructed forms
(A): perfect input without noise, (B): noise covered input, (C):
reconstructed input (RI) with SCS, (D): RI with NMF, and (E):
RI with combination of SCS and NMF. Signal-to-noise ratio
is: 0.83. Note the improved reconstruction for the combined

method compared to single SCS or single NMF algorithms. 89

21 Single layer basis sets for SCS alone (A), NMF alone

(B) and for the NMF using SCS outputs in linear mode
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(C).
Inputs have 256 (= 16 x 16) dimensions. Number of filters:
32 (= 2 x 16). For each method, all 32 filters are depicted.

SNR=0.67 90

22 Parameter dependences.

Colors denoted different methods. SCS: cross, NMF': star, SCS
and NMF: dot. (A) Dependence of RMS reconstruction error on
standard deviation (STD) of the noise, (double-bar inputs) (B)
RMS reconstruction error for noise-free perfect single bar inputs
versus STD of noise during training phase (single-bar inputs),

and (C) RMS reconstruction error for SCS (crosses) and for the
combined method (dots) versus kernel width for the noise-free
case (black lines) and for noisy input (grey lines). STD=L1.5.

Note the remarkable independece on the kernel parameter, the
single adjustable parameter for a given architecture.. Kernel

width for (A) and (B): 0.06 92

23 Improved noise filtering and pattern completion in the

hierarchy.
Subarchitectures of the first layer have 6 x 6 = 36 input
dimension. Dimension of NMF hidden vectors of first layer

units is 12. First layer is made of 3 X 3 = 9 units. Input of
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the second layer has 108 dimensions. Dimension of the hidden
vector of the second layer is 36. Upper row: Pixels of the
inputs are missing. Bottom row: Pixels and sub-components
of the inputs are missing. (A) Original input with missing
pixels and sub-components, (B) input to the architecture, (C)
reconstructed input using first layer reconstructions only, (D)

reconstructed input using the full hierarchy. SNR is 0.5. 94

24 Results with STAGE and it parallel form on a parity
problem from benchmark from DIMACS
Upper sub-figure: Stage alone. Lower sub-figure: Up to
improvement step number 4 x 10° the runs are equivalent to
100 parallel Walksats. If those Walksats were run parallel then
the results would be the same upon two orders of magnitude
shorter computation time. In fact, Walksat stops improving
at around 2 x 104, i.e., much sooner than step no. 4 x 10°.
At step 4210° STAGE is turned on and intelligent restarts are

generated. 98

25 Results on aim-x-y-z-’text’ problems
Comparisons with CPLEX, a commercially available Integer

Linear Programming routine. 99
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26 Context of the document

Document and its first and second ‘neighbors’. 110

27 SVM based document classifiers (a) Classification of
distance from document using SVM classifiers, (b) Value

estimation based on SVM classifiers. 111

28 Search pattern for breadth first crawler. Search was
launched from neutral site. A site is called neutral if there
is very few target document in its environment. (For further
details, see text.) Diameter of open circles is proportional to

the number of target documents downloaded. 113

29 Search pattern for context focused crawler.
Search was launched from neutral site. Diameter of open circles

is proportional to the number of target documents downloaded.114

30 Search pattern for CFC and reinforcement learning
Search was launched from neutral site. Diameter of open circles

is proportional to the number of target documents downloaded.114

31 Results of breadth first, CFC and CFC based RL

methods. 116

32 Comparisons between ‘neutral’ and mail server sites

in the initial phase. Reward and punishment are given in
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the legend of the figure. Differences between similar types

are due to differences in launching time. The largest time

difference between similar types is one month. Neutral site

(thin lines): http://www.inf.elte.hu. Mail list (thick lines):
http://www.newcastle.research.ec.org/cabernet/events/msg00043.html.
Search with ‘no adaptation’ (dotted line) was launched from

mail list and used average weights from another search that was

launched from the same place. 117

33 Comparisons between ‘neutral’ and mail server sites up

to 2000 documents. Same conditions as in Fig. 32 117

34 Comparisons between different sites up to 20,000
documents. Same conditions as in Figs. 32 and 33. Search
with ‘no adaptation’ used average weights from another search

that was launched from the same place (denoted by x) 118

35 Change of weights of SVMs in value estimation for mail

site. 120

36 Change of weights of SVMs in value estimation for

‘neutral’ site. 121
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Pseudo-code for the tree learning algorithm. 75
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1. INTRODUCTION

Internet technology is developing at a very high rate. Standardiza-
tion of existing methods go ‘hand-in-hand’ with new developments of
information theory. In fact, the area makes use of the latest result
of mathematics, electrical engineering on the one end, and discover-
ies of neurobiology, DNA computing, psychology and psychophysics,
evolutionary techniques, etc., on the other. The speed of development
of sofware components, techniques that allow to reuse such compo-
nents in a platform free fashion is astonishing. This evolution is to
become unlimited. In my opinion, past limitations imposed by ‘built-
in-obsolences’ of Microsoft are about to disappear. Platform is about to
become secondary, and we might experience fast ‘globalization’ much
sooner than desired. The central part of this new era is JAVA and
related enabling technologies, including T- and, JavaSpaces, and XML
Security tools. In turn, Al tools that can deal with ‘unlimited’ infor-
mation from the point of view of the human brain, are in need. A
small part of this problem, the structure based identification of XML

documents, is the subject of the present contract.

1.1. Remote example. I give an example, a possibly solved case, of

the next three years.
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Existing examples prove the need for adaptive asynchronous infor-
mation collection and control methods for distributed decision-making.
Several experiences (see, e.g.,
http : //www.eds.com/case tudies/case,rkansas.shtml) point towards
this direction. My model example is the complex case of Parkinson
disease patients (PDPs) using Deep Brain Stimulators (DBS). Simpler
systems can be derived as analogies of this case.

For PDPs, histories of individual patients show that sporadic experi-
ences at different hospitals need to be collected to improve evaluation.
Remote setting of the DBS, augmented reality with information collec-
tion and data management together, could form global ambient intelli-
gence (GAI) for full support of the patients. Data management should
easily meet constraints derived from Good Clinical Practice and could
be seen as an extension of drug administration procedures. GAI can
serve the patient, can help the doctor and can estimate risk. Adaptive
tools for such (safety critical) applications have become available by
the latest achievements in reinforcement learning (RL). Optimization
of decisions on continuing data collection or executing an action can
be termed as optimization of perception-action loops. Such challenging
optimizations concerns partially observed environments, being in the

focus RL research.
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One may foresee the birth of a ‘new generation’, the Al nurse race’,
or the ‘hostess’ race 'who’ represent goal-oriented agents with possi-
bly adaptive and distributed subsystems. The nurse ’serves’ someone,
e.g., a patient, a visitor, the owner of a home, or groups of those. For
the interactions with people served, the hostess makes use of signals
that are important for efficient human communication, including fa-
cial expressions, prosody, body talk, and behavioral patterns. In case
of PDPs GAI needs to exploit: - the medical history of the patient
(available locally or over the internet), - the medical history of other
patients, - mobile communication outside of safe environments (PDPs
with DBS often engage in activities outdoor), - optimization of the
neural prosthetic device, the DBS, with option for remote control, -
visual, acoustic and haptic augmented reality tools, - distributed data
editing, - (provisional) access control, - decision making in this safety
critical situations. Particular aspect of the project is that decision is
achieved by combining the assessments of experts who may be located
at different sites and may have different roles. The access to (medical)
data may improve the decisions at the expense of real time, communi-
cation time, and computational costs. Risk-sensitive decision-making

needs to consider pipeline operations, both in communication and in
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computation tasks. One can develop components under the assump-
tion that Quality of Service will be available for internet networks in
about two years.

I see no bottleneck for GAI. Today, all essential technology compo-
nents are within reach, including (i) JavaSpaces, the flexible message-
ware between available/existing software components at various sites
and (ii) XML access control (XACL) for provisional authorization and

(iii) reconfigurable hardware components.

2. OVERVIEW OF REPORT

The report is meant to be a thorough overview of technologies that
I consider important. The report has the following structure. First (in
Section 3), the logistics of ‘measuring’ XML documents is described.
Subsequent sections treat the recent SW components and (a restricted
subset of) state-of-the-art AI techniques. These sections review de-
scribe the technologies that we have applied. The AI techniques that
I describe here, are mostly restricted to novelty detection. Detailed
descriptions, including mathematical details, can be found in the Ap-
pendices. Results on probabilistic clustering are presented in Section
11. This section is followed by a short discussion and conclusions,

which basically say ‘yes, this is powerful’, and a section (12.1) which



XML AND NOVELTY 25

is about possible future directions. The report ends with Appendices
and a very short (!) list of references, of cca. 100 key papers and
URL addresses. The last Appendix (Appendix 17) contains the list of
software attached on the CD ROM. Software is given in source code.
Components are written in Matlab and in JAVA. In either cases the
appropriate commenting standards are used: Javadoc for JAVA and

‘help’ system in the header of each file for Matlab.

3. LogisTics OF XML VALIDATION, IDENTIFICATION, AND

PROBABILISTIC CLUSTERING

Examination of XML documents can have a series of steps. A possi-
ble scenario is shown in Fig. 1. Other scenarios may well compete with
the procedure depicted. In particular, examination loops needs to be
inserted at almost every item.

The basis of the procedure is the following.

(1) Does the document satisfy those strict rules (or checklist) that
we have? For example, is it an XML document?

(2) If no, and this the case of interest here, could it be a valid,
or a partially useful document or is it ‘junk’, or could it be

‘potentially dangereous’, etc?
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(3) Partial information can be collected and evaluated together at
a final stage, that could be a ‘mixture of experts’ model, or a

‘product of experts’, or similar probabilistic Al technologies.

In a more general setting, one needs to talk about ‘diagnosis’ Any
partial information is a symptom and one should look for the proba-
bilities of different diseases. Loops are important in such inferencing,
because the ‘disease’ can be recognized at an early stage or may call for
more thorough analysis. Recent AI achievements enable expert level
variational Bayesian reasoning using such data from the Quick Medical
Reference Database (QMR-DT), which corresponds to a search space
of 2809, This astonishing number indicates that the technology will be

widely used in diverse fields.

4. REVIEW OF A FEW USEFUL XML TOOLS

There is a tremendous number of SW tools for XML documents.
The proliferation of XML based markup languages is still vivid and
increasing. We list three of these tools. These tools are not the most
important tools, however, these tools were necessary for us during the
project. For other general tools, the interested reader is referred to the

literature. Best starting page is possibly http://www.xml.org. The
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FIGURE 1. Logistics of XML identification

Every rule-based system, which is of help, should be applied.
Cross-validated parts of the XML documents should be eliminated.
The remaining part of the XML document is the ‘difference’. Dif-
ferences may appear in tags, in attributes, in the text itself, and
in the tree structure. All of these ‘differences’ should be analyzed
to estimate its the probabilities. Outputs of these analyzers may
be considered as ‘expert opinions’ and may serve a further stage
that make a decision about the document. This stage could apply
— beyond others — mixture of expert and/or product of experts
strategy for estimation.
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first two tools (Tidy and Jtidy) allow to convert html documents to
XML form. Some of our studied examples concerned such documents.
(1) Tidy (see Appendix 14.1)
(2) Matlab JAVA (see Appendix 14.2)
The last tool (Matlab JAVA) allowed us fast algorithmic development.
Efforts made by Matlab developers to meet the Java challenge are

noticable and the resulting software is useful.

5. REVIEW OF EXISITING XML VALIDATION, ETC. TOOLS

There is a tremendous number of SW tools for XML, including tools
(see Appendix 13) for

(1) validation,

(2) constraints,

(3) comparisons, and

(4) assertion grammars).

These tools are reviewed in the Appendix and/or are attached in the

CD-ROM.

6. UseED Al TOOLS

The Al tools that we used and describe here, include

(1) Probabilistic Tree Classifier (see Appendix 15.1)

(2) Connectionist novelty detection (see Appendix 15.2)
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(3) Pattern completion with probability estimation (see Appendix
15.3)

(4) Fast solution to the satisfiability problem (see Appendix 15.4)

These tools are detailed below.

6.1. Joint distributions. One of the challenges of density estimation
as it is used in machine learning is that usually the data are multi-
variate and often the dimensionality is large. Examples of domains
with typically high data dimensionality are pattern recognition, image
processing, text classification, diagnosis systems, computational biol-
ogy and genetics. Dealing with joint distributions over multivariate
domains raises specific problems that are not encountered in the uni-
variate case. Distributions over domains with more than 3 dimensions
are hard to visualize and to represent intuitively. If the variables are
discrete, the size of the state space grows exponentially with the num-
ber of dimensions. For continuous (and bounded) domains, the num-
ber of data points necessary to achieve a certain density of points per
unit volume also increases exponentially in the number of dimensions.
One other way of seeing this is that if the radius of the neighborhood
around a data point is kept fixed while the number of dimensions, in
the forthcoming denoted by n, is increasing the relative volume of that

neighborhood is exponentially decreasing. This constitutes a problem
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for non parametric models. While the possibilities of gathering data
are usually limited by physical constraints, the increase in the num-
ber of variables leads, in the case of a parametric model class, to an
increase in the number of parameters of the model and consequently
to the phenomenon of overfitting. Moreover, the increased dimension-
ality of the parameter space may lead to an exponential increase in
the computational demands for finding an optimal set of parameters.
This ensemble of diffculties related to modeling multivariate data is
known as the curse of dimensionality. Graphical models are models
of joint densities that, without attempting to eliminate the curse of
dimensionality, limit its effects to the strictly necessary. They do so by
taking advantage of the independences existing between (subsets of)
variables in the domain. In the cases when the dependencies are sparse
(in a way that will be formalized later on) and their pattern is known,
graphical models allow for effcient inference algorithms. In these cases,
as a sideresult, the graphical representation is intuitive and easy to

visualize and to manage by humans as well.

6.2. Representation capabilities. If graphical representations are
easy to grasp by means of human intuition, then the subclass of tree

graphical models will be even more intuitive. For once, they are sparse
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graphs, having n-1 or fewer edges. More importantly and more pre-
cisely, between each two variables, there is at most one path, or, in
other words, the separation relationships, which are not easy to read
out in a general Bayes net topology, are obvious in a tree. Thus, in a
tree, an edge corresponds to the simplest common sense notion of di-
rect dependency and is the natural representation for it. However, the
very simplicity that makes tree models intuitively appealing also limits
their modeling power. In other words, the class of dependency struc-
tures representable by trees is a relatively small one. For instance, over
a domain of dimension n there are n™~2 distinct (undirected) spanning

trees, but a total of 27*~1/2 yndirected graphs.

6.3. Probabilistic trees.

7. PROBABILISTIC TREES

As discussed above we apply probabilistic tree model in our methods.

The model is described here.

7.1. Probabilistic tree classifier. Consider n data set given: D, ... D,.
The elements of each data set belong to a particular probability dis-

tribution. We assign a probabilistic tree model to each data set. The
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T; ... T, probability distribution learned by the probabilistic tree mod-
els minimizes the Kullback-Leibner (KL) divergence between the dis-
tribution of the data set and the distribution represented by the tree
models.

After training the models, the system is able to classify efficiently.

When the data originates from an unknown source, we present the
data to the 77 ...T,, models. Then the source of the data can be iden-
tified as the class of the model giving the greatest probability (proba-

bilistic ‘distance’, ‘membership’) for the unknown source.

7.2. Learning a tree model. Tree models can be learned by the

Chow-Liu algorithm [28]. Details can be found in 15.1

8. MIXTURE OF TREE MODEL

The Mixture of Tree model [83] is a method which can be considered
as the generalization of the Probabilistic Tree model presented earlier
in the text.

The advantage of the method is that it can also be applied in the
case when the categories used in chapter 7.1 are unknown. If the data
set is from many sources, the Mixture of Trees method is capable of

clustering the data set. The mixture model created this way minimizes
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the KL divergence between the distribution of the input data set and
the distribution represented by the model.

The disadvantage of the method is that depending on the task, the
order of magnitude of its time complexity is twice as great as the time
needed to train the simple Probabilistic Tree model. Its applicability
is limited by the fact that the clusters it consists of have to be known.
When the classes are from similar distributions, the clustering doesn’t
correspond to the input data set. There are some cases when the
method gives good KL divergence results with different clustering.

When data from identified sources are not available, the Probabilistic
Tree models can not be trained separately. Under such circumstances
one may apply the Mixture of Trees method for probabilistic valida-

tion.

9. FURTHER STATE-OF-THE-ART Al TOOLS, WHICH ARE REQUIRED
The breakthrough of probabilistic models originates from the recent

achievements on

(1) probabilistic diagnostic tools (see previous note on QMR-DT),

which are closely related to
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(2) probabilistic pattern completion techniques, which however, do
not require known (measured) probabilities but, instead make
use of noise models and can discover sub-components of the data

(3) database-dependent adaptive noise filtering methods that ex-
tract structureless unmodeled components (possibly having max-

imal entropy content).

The strength of these methods is so attractive, that recently traditional
AT fields are making use of them. Our example is about solving CNFs
with function approximators (subsection 9.3) Some details can be found
below, more detailed descriptions are given in the Appendices and in

the cited literature.

9.1. Novelty detection. Recent advents on adaptive information max-
imization can discover structured components (generalized ‘directions’)
of databases. Such directions form a subspace in the database. In an-
other context, one might say that compression methods could be data-
base dependent. These statements are in line with recent theoretical
unification of prediction, gambling, and coding [40, 92, 120].
Information maximization provides us the tool to extract structure-
less components. The method can work with a (possibly overcomple)

quasi-linear thresholded transformation, called sparse code shrinkage
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(SCS) [54]. SCS, which is a generalization of wavelet denoising tech-
nique has the advantage that the part of the data, which is worth to
analyze (i.e., has structure in it), and the part of the data, which is not
worth to analyze (i.e., has no structure) can be separated given a data-
base. Making use of the database dependent structured ‘directions’,
novelty would classify as noise. In turn, it is rejected by the quasi—
linear filter and can undergo structure analysis. Structure analysis,
in this context means tools for maximization of information transfer.
Maximization of information transfer for a single input is related the
Kolmogorov-complexity of the input. Adaptive tools aiming to solve
this problem are subject to extensive research at present. In a broader
context, structure analysis can mean a joint analysis using ‘collaborat-

ing’ rule based and statistics based ‘experts’. (See Appendix 15.2)

9.2. Pattern completion. One may assume that the underlying noise
of the external world is Poisson noise. This assumption means that a
particular component of the input is either present or not. Discovering
the best representation under this assumption is equivalent to discov-
ering the sub-components of the input. This approach has been under
investigation. Sometimes it is called ‘positive coding’ [26] and also

‘non-negative matrix factorization’ [77]. These methods are related in
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their assumptions about the ‘world’, however, they are very different

from the algorithmic point of view. For more details see Appendix 15.3

9.3. Solving CNFs with function approximators. A serious prob-
lem of computing the ‘differences’ between an actual input and the
database is that large satisfibility problems need to be solved. State-
of-the-art methods make use of function approximators to speed up
the search. Recent techniques make use of reinforcement learning or a
fast approximation to reinforcement learning [20, 22]. The technique is
called STAGE. This direction is important because of the tremendous
computational requirements posed by the comparisons.

In another project [121, 86], we have adapted STAGE and experi-
enced its attractive properties. Results are summarized in Appendix

15.4.

10. PROBLEM DEFINITION: PROBABILISTIC MODEL FOR XML

FILES

The first task of creating the probabilistic model is to define prob-
abilistic variables. We have created a class definition for trees that
covers any tree. It is like numbers 1,2 and many covers every natural
number. This class has been called ‘covering convex hull tree’ (CCH

tree). It allowed us to assign probabilistic variables to tags of XML
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documents. The probabilistic variables are assigned to the vertices of
the tree (the variables are indexed according to breadth-first traver-
sal: X7...X,). A complete tree was generate with a given depth and
branching ratio.

The tree structure of an XML document is naturally given by the
hierarchical structure of its elements. The XML tree is fit onto the
CCH tree of the probabilistic variables in the following fashion. The
X probabilistic variable is assigned to the root element, and the other
variables are assigned to tags/elements in the corresponding positions.

The probabilistic variable can take the following values:

e 0, meaning ”Not exists”, if there is no tag in the XML tree in
the same position as a probabilistic variable,
e nrAtts + 1, where nrAtts denotes the number of attributes of

the element in the position of the probabilistic variable.

The depth or branching ratio of the XML tree could be greater than
the tree of probabilistic variables. In this case, there are tags in po-
sitions which don’t have corresponding variables. These tags are not
represented in the model. The number of these ignored tags can be
decreased by increasing the number of probabilistic variables. The size
of the model is limited by the available computational capacity. As

seen from our experimental results (see Table 11.3) , the error can
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be decreased by choosing the depth and branching ratio of the model

appropriately. The ideal settings are task-dependent.

10.1. Generating Sample XML Files. The XML generation is done
by a Java class, TreeBuilder. This class handles the generation of trees,
and is highly customizable. The main idea was to generate one tree
according to some parameters, and permute it several times to create

a class of documents. Parameters of tree generation are:

depth of tree

e upper bound of branching ratio (number of children of an ele-
ment) is generated as a random number with this upper bound
at each element

e probability distribution of elements

e probability distribution of attributes

e or an XML document can also serve as a basic tree

The probability distributions are encapsulated by the Probability
class. So far uniform and Gaussian probability distributions have been
implemented. At each element, the element distribution is used to gen-
erate the number of children of the node, while the number of attributes
are generated according to the attribute distribution parameter. The

upper bound for the attribute number can also be set.
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We created two basic tree operations to permute a given XML doc-
ument. These are deletion and adoption. The delete operation deletes
a subtree from the XML tree. In the adoption method, one children
(if exists) of an element is adopted by the element’s next sibling. Both
operations are performed recursively at each element in the tree. These
are also customizable: the user of class treeBuilder can use a Probabil-
ity object to set the probability distribution of deletion and adoption,
and the increase (decrease) by which the probabilities of these opera-
tions change at each level from the root.

The deletion permutation makes sense because it reflects that in
the content model of an element, some child elements can be optional
(sometimes are present, sometimes not). By using deletion, we can
simulate optional elements. Similarly, adoption is useful to reflect that
an XML was restructured (an element has a new position, for example
when a database structure changes, or the DTD/Schema changes).

If many files will be generated with these operations from one tree,
they will follow a particular probability distribution, and can be per-
ceived as a class of documents.

In real-world applications, many variations of one element can exist
when its content model is not strict. In this case, the sequence of its

child elements is not constrained, for example it is specified as a choice
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or set of (by <xsd:choice> and <xsd:all> elements in XML Schema). It
would be difficult and require too many samples to simulate. Therefore
we transform all of the trees in our model to be leftish (the children of
every node are ordered so that the one the depth of which is greater is

on the left of the other).

10.2. Representing XML Files. The XML files are represented as
an array which will be used to train the probabilistic variables. This
is done by the XML2Tree class (or can be invoked as a TreeBuilder
method also). Only a subtree of the XML is represented. The depth
and branching ratio of the subtree can be set. This subtree is a com-
plete tree, and can be deeper or wider than the xml document. Then,
using breadth-first traversal, an array representation of this subtree
is created, where the elements (and attributes) of the document are

represented by numbers.

e If there is an element (with possible attributes) in the document
tree in the which corresponds to a node in the represented sub-
tree the element will be represented at the node’s position by
nrAtts + 1lm where nrAtts is the number of its attributes.

e if the node in the represented subtree doesn’t have a correspond-
ing element in the tree of the XML document, it will be repre-

sented by zero.
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11. RESULTS

11.1. Identifying probabilities. We applied the following method to
identify data sets:
A data set from a specified probability distribution is separated into
training and control set. Then a Probabilistic Tree model is trained
according to the training set. After this, the model gave probabilities
for samples from both the training and control set. The histogram of
probability distributions can be seen e.g. in Fig.2.(a) and 2.(b) Accord-
ing to our experiments, a small number of training data is sufficient for
the model to give similar distribution for the training and control set.

The range of the obtained probability values cover more orders of
magnitude. However, on logarithmic scale, the histogram correspond-
ing to the data set looks smooth.

To check what probabilities are assigned to data sets from different
distributions, we extended the method above:
Samples from another data set were presented to the model. The his-
togram of the results obtained this way is in Fig. 2.(c). It can be seen
that there is only a slight overlap between the histograms of the two
data sets.

To check that the second data set is from a well-defined probability

which can be learned, we trained a second Probabilistic Tree model in



42 XML AND NOVELTY

this data set also. The histograms about this model’s results with the
training and control sets of second data set are shown in Fig.2.(d) and

Fig.2.(e).

11.2. Classification. The classification experiments were performed
on a data set from three sources. Training sets with identical cardi-
nality were chosen from the three data sets. Then, three Probabilistic
Tree models were trained on these sets respectively. The three model
assigned probability values to the remaining elements of the three data
sets. We defined the class of the data set as the class of the model which
assigned the greatest probability estimate to the data set. During the
experiment, we changed the data sets used, the number of elements
in the training sets, and the parameters of the covering trees. For the

summary of results, see Table 11.3.

11.3. Novelty detection. Novelty detection is more difficult than
classification, since it’s not about choosing the greatest one from many
probabilities. Here, one has to make a decision based on a probabil-
ity value estimated by a model, whether the given sample belongs to a

set or not. Determining the threshold value is a difficult task, becauseL
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e as can be seen in the figures of this section, the model gives an
answer which spans more orders of magnitude
e the number of identified correct samples has to be maximized

e while the number of misclassified samples has to be minimized

When the threshold value is small, we not only reject the samples
that are out of the category, but also fail to identify the data belonging
to the class. If the threshold value is too high, we accept both the data
belonging to the class and those who don’t with high probability. See
e.g. Fig.(10-16)

Our method to determine the threshold value takes both source of
errors into consideration. We choose the threshold value so that the
following sum would be minimized: (number of samples belonging to
rejected classes + number of wrongly accepted samples from other
classes).

We summarized the results obtained with this method in table 11.3.

12. DISCUSSION AND CONCLUSIONS

My view of the validation identification problem is as follows. The
final word on validation-identification is given by the complexity of the

task. For small problems

e rules can be generated,
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Datl | Dat2 | Dat3 | Dat4 | Dath
Size of the dataset 1001 | 1001 | 2001 | 257 | 431
Sizes of XML’s tree structure
upper bound of branching number 4 4 5 5 5
upper bound of depth 4 4 4 4 5
generated depth for the first sample file 4 4 5 5 5
Probabilities
Node Probability Data
name of distribution U U U U U
delete probability 0.1 0.1 0.1 0.2 0.1
adopt probability 0.2 0.2 0.1 0.2 0.1
increase to delete probability 0.05 | 0.05 | 0.05 0 0.03
increase to adopt probability 0.05 | 0.05 | 0.05 0 0.03
Attribute Probability Data
name of distribution G G G G G
medium 4 2 2 3 2
standard deviation 1 1 1 1.5 0.5
probability of updating attributes 0.3 0.3 0.3 0.3 0.3
maximum generated attribute number 6 6 3 5 6
TABLE 1. Parameters of artificial datasets generated by

TreeBuilder software.

1st Dataset | 2nd Dataset | 3rd Dataset | B.R. | Depth | N.-T.S. | SN. | F.S. | P.
Datl Dat2 Dat3 3 4 10 3973 | 775 | 0.804
Datl Dat2 Dat3 3 4 30 3913 | 225 | 0.942
Datl Dat2 Dat3 3 4 100 | 3703 | 65 | 0.982
Datl Dat2 Dat3 2 5 30 3913 | 161 | 0.959
Datl Dat4 Dath 3 4 30 1599 | 250 | 0.843
Dat2 Dat3 Dath 3 4 30 3343 | 90 | 0.973
Dat4 Dat3 Dat2 4 2 30 3169 | 64 | 0.980
Dat4 Dat3 Dat2 4 3 30 3169 | 85 | 0.973
ADC CML Datl 3 4 30 3341 | 162 | 0.952
ADC CML Datl 4 3 30 3341 | 25 | 0.993

Abbrev

B.R. Branching ratio of the covering tree.

Depth Depth of the covering tree.

N.T.S. Number of training samples

S.N. Sample number. Overall number of samples in the three datasets

Thrs Threshold. Optimal threshold of probabilities for accepting/rejecting

samples.

F.S. Failed samples. The number of misclassified samples.

ADC Astronomy Data Center.

CML Chemical Markup Language.

TABLE 2. Parameters used for artificial (Datl-Dat4) and
real XML data (ADC, CML).
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FIGURE 2. Modeling results

The figures show the probabilities approximated by Probabilistic
Tree Models

a) Model-1 on its training samples from 1st dataset

b) Model-1 on unseen samples from the same dataset

¢) Model-1 on 2nd dataset generated from different distribution
d) Model-2 on its training samples from 2nd dataset

(e) Model-2 on unseen samples from 2nd dataset

Model parameters: Training set size:30 samples, Branching ratio:4,
Depth of tree:4, 1st dataset: Datl, 2nd dataset: Dat2 (for genera-
tive parameters of artificial datasets see Table 11.3)
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e rules updated, and

e rules can be enforced.
This possibilities are excluded

e for problems without strict rules,

45

e for problems where rules may change (often) and SWs are not

thoroughly tested

e for problems wich are large and can be subject to corruption
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FIGURE 3. Modeling results

For definition of sub-figures (a)-(e) see fig. 2

Model parameters: Training set size:30 samples, Branching ratio:4,
Depth of tree:4, 1st dataset: Dat2, 2nd dataset: Datl (for genera-
tive parameters of artificial datasets see Table 11.3)

e for problems that have ‘measurements’, i.e., for noisy problems

and the combinations of those. In turn, probabilistic models are re-
quired for any internet based technology, including XML.

The project has shown the applicability of data based probabilistic
analysis of tree-structured XML documents. Results on artificial and
internet databases have been presented. The approach is to be judged

as one component of a larger validation system.

12.1. Possible future directions. Future steps can be directed to-

wards SW development for an applications. This would require (a)
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FIGURE 4. Modeling results

For definition of sub-figures (a)-(e) see fig. 2

Model parameters: Training set size:30 samples, Branching ratio:4,
Depth of tree:4, 1st dataset: Dat2, 2nd dataset: Dath (for genera-
tive parameters of artificial datasets see Table 11.3)

a particular database and (b) a study of that database for efficient
encoding.

Another direction of future work could be the investigatin of the effi-
ciency of the distinct probabilistic methods. The mutual improvement
of these methods and the computational overhead could be analyzed
this way.

Last but not least, statistical analysis by itself has a limited value.
There are too many unimportant details, which should not be anal-

ysed for a given purpose. In other words, statistical analysis needs
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FIGURE 5. Modeling results

For definition of sub-figures (a)-(e) see fig. 2

Model parameters: Training set size:30 samples, Branching ratio:4,
Depth of tree:4, 1st dataset: Dat3, 2nd dataset: Dat4 (for genera-
tive parameters of artificial datasets see Table 11.3)

to be extended by the goals of the system. In turn, goal-oriented
statistical analysis is the direction this work should be extended to.
Given the attractive properties of learning systems, adaptive statisti-
cal methods and adaptive goal-oriented systems need to be combined.
Reinforcement learning (RL) seems to be the appropriate tool to do
so. The major problem of RL is the exponentially growing learning
time as a function of state and action spaces. The internet crawler

is a novel example on how to combine RL and classification schemes.
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FIGURE 6. Modeling results

For definition of sub-figures (a)-(e) see fig. 2

Model parameters: Training set size:30 samples, Branching ratio:4,
Depth of tree:4, 1st dataset: Dat3, 2nd dataset: Dath (for genera-
tive parameters of artificial datasets see Table 11.3)

This approach, which is very similar to the most efficient game playing
machines is convincing possibility to ‘combine the experts’.
Still, it is known, that feature extraction is the most stringent re-

quirement for RL. In turn, a method that makes use of RL requires:

e automatic feature extraction (automatic extraction of sub-components)
and

e problem partitioning.

The former problem may assume an efficient solution given our hier-

archical ICA + NMF algorithm (Appendices 15.2, 15.3). The latter
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FIGURE 7. Modeling results

For definition of sub-figures (a)-(e) see fig. 2

Model parameters: Training set size:30 samples, Branching ratio:4,
Depth of tree:4, 1st dataset: Datd, 2nd dataset: Dath (for genera-
tive parameters of artificial datasets see Table 11.3)

seems to have its solution in a re-phrasing of RL in terms of the so

called event-learning formalism [63, 64, 78].

APPENDICES
13. APPENDIX A: EXPRESSING CONTRAINTS ON XML DOCUMENTS

There are many tools which can be used to check the syntax and
semantics of XML documents. First, well-formedness is checked by an

XML parser, then additional constraints can be expressed:

e the document can be validated against different schemata or

DTDs
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FIGURE 8. Modeling results

For definition of sub-figures (a)-(e) see fig. 2

Model parameters: Training set size:30 samples, Branching ratio:4,
Depth of tree:4, 1st dataset: Dat5, 2nd dataset: Dat2 (for genera-
tive parameters of artificial datasets see Table 11.3)

an XSL stylesheet can express additional assertions, or act as a
schema language

an XSL extension can support user-defined functions which can
perform further checks

an EXSLT (Extended XSLT) processor’s built-in functions (math-
ematical, set functions) can be used

the document can be compared to other XML documents (diffing

and merging tools)
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FIGURE 9. Modeling results

For definition of sub-figures (a)-(e) see fig. 2

Model parameters: Training set size:30 samples, Branching ratio:4,
Depth of tree:4, 1st dataset: Dat5, 2nd dataset: Dat4 (for genera-
tive parameters of artificial datasets see Table 11.3)

e a query language (XQL, XQuery) can be used to look for the
same information (similar elements, contents)
e an XML processor with DOMHash implementation can be used

to check whether two nodes in an XML tree are the same

Validating XML documents
A schema is a collection of rules about a document’s structures and
syntax. An XML document is valid if it has a schema and it satisfies

Y

the constraints described in that schema. The terminology is often ’a

document is valid against a schema/DTD’. There are several schema

languages (XML Schema [XSD], TREX, RELAX, RELAX NG, SOX,



XML AND NOVELTY 53

Misclassified 'novel’ and 'familiar’ samples
1100

1000 % misclassified novel samples
—¥#— misclassified familiar samples
—— cumulated misclassified samples 4

©

o

=]
T

®
o
=]
T
I

~
o
=]
T
I

o

o

=l
I

mber of samples
ol
o
o

S 400
Z
300
200

100

-18 -16 -14 -12 -10 -8 =6 —4 -2

10 10 10 10 10 10 10 10 10

Probability (log scale)

F1GURE 10. Optimized novelty detection

Misclassified samples vs. accepting threshold value.

Model parameters: Training set size:150 samples, Branching ra-
ti0:3, Depth of tree:4, ” Familiar” dataset: Datl, ”Novelty” dataset:
Dat2 (for generative parameters of artificial datasets see Table
11.3)

DSD, XDR, BizTalk schema, Schematron, etc.), and people keep on
creating new ones. The most important ones are DTD, XML Schema,
and Schematron.

DTD

The goal of DTDs is to specify the structure of instance documents.

e check the content model of an element
e check properties of attributes

e check some references (ID, IDREF) in a document
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F1GURE 11. Optimized novelty detection

Misclassified samples vs. accepting threshold value.

Model parameters: Training set size:150 samples, Branching ra-
ti0:3, Depth of tree:4, ” Familiar” dataset: Dat2, ” Novelty” dataset:
Dat3 (for generative parameters of artificial datasets see Table
11.3)

e insert additional information into an XML document (default

attribute values)

However, DTDs are very limited, and the DTD syntax is not in
XML. A DTD cannot express datatypes that are often desired in com-
mercial environments (validating banking data, range checking, date
handling, etc.), and its datatypes are not compatible with those found
in databases. Only ’character data’ can be specified, in different forms

( #PCDATA, NMTOKEN). The other shortcomings of DTDs is that



XML AND NOVELTY 55

Misclassified 'novel’ and ‘familiar’ samples
800 T T T T T T

=¥~ misclassified novel samples

o | % misclassified familiar samples 1
Q — cumulated misclassified samples e
[}
£ 5001
]
n
—
O 400
S
()
o
& so0f
=1
=z

200

100

10 107 10 107 107 10 10° 10° 10°

Probability (log scale)

FI1GURE 12. Optimized novelty detection

Misclassified samples vs. accepting threshold value.

Model parameters: Training set size:150 samples, Branching ra-
ti0:3, Depth of tree:4, ” Familiar” dataset: Dat4, ” Novelty” dataset:
Dat2 (for generative parameters of artificial datasets see Table
11.3)

they are not namespace aware (so one cannot specify the same element
name in different context to be different).

DTDs are still widely used, due to their simplicity and the support
of many DTD-aware validating parsers.

XML Schemas

The purpose of XML Schemas [5, 6, 4, 7] are to specify the structure
of instance documents and the datatype of each element/attribute.

Highlights of XML Schemas:

e XML syntax
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F1GURE 13. Optimized novelty detection

Misclassified samples vs. accepting threshold value.

Model parameters: Training set size:150 samples, Branching ra-
ti0:3, Depth of tree:4, ” Familiar” dataset: Dat4, ” Novelty” dataset:
Dat5 (for generative parameters of artificial datasets see Table
11.3)

e rich datatyping
— more than 44 internal datatypes
— user-defined datatypes are possible (many facets to make
restrictions, such as minValue, maxValue, pattern, etc.)
— some other languages also use XML Schema’s datatypes
(TREX)
e object-oriented’ish
— type extension/restriction

— modularity (import/include mechanism, type libraries)
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F1GURE 14. Optimized novelty detection

Misclassified samples vs. accepting threshold value.

Model parameters: Training set size:150 samples, Branching ra-
ti0:3, Depth of tree:5, ” Familiar” dataset: Dat4, ” Novelty” dataset:
Dat5 (for generative parameters of artificial datasets see Table
11.3)

Can express sets, i.e., can define the child elements to occur in
any order

Can specify element content as being unique (keys on content)
and uniqueness within a region

Can define multiple elements with the same name but different
content

Can define elements with nil content

Can define substitutable elements - e.g., the "Book” element is

substitutable for the ”"Publication” element.



58 XML AND NOVELTY

Misclassified 'novel’ and 'familiar’ samples
700 T T T

=¥ misclassified novel samples
=% misclassified familiar samples
— cumulated misclassified samples

600 -

o

=]

=]
T

N

o

=]
T

w
=]
=]

Number of samples

N
=]
=]

100

0 ey OO0
107 107 107 0?10 107 10 107 10
Probability (log scale)

FI1GURE 15. Optimized novelty detection

Misclassified samples vs. accepting threshold value.

Model parameters: Training set size:150 samples, Branching ra-
ti0:3, Depth of tree:4, ” Familiar” dataset: Dat4, ” Novelty” dataset:
Garbage (for generative parameters of artificial datasets see Table
11.3)

Most of the other schema languages are very much like XML Schema.
(see the comparative analysis done at UCLA by Wesley Chu and Dong-
won Lee [75]). All are approaches to describe the document structure
and data structures, except Schematron.

Schematron

The schemas discussed earlier (XSD, DTD) are constructed by defin-
ing parent-child and sibling relationships, as they are based on regular

grammars. This means that there are still many constraints that are
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FIGURE 16. Optimized novelty detection

Misclassified samples vs. accepting threshold value.

Model parameters: Training set size:150 samples, Branching ra-
ti0:3, Depth of tree:5, ”Familiar” dataset: ADC, ”Novelty”
dataset: Garbage (for generative parameters of artificial datasets
see Table 11.3)

difficult or impossible to express with these ’'content model-based’ val-

idation languages :

e Where attribute X has a value, attribute Y is also required
e Where the parent of element A is element B, it must have an
attribute Y, otherwise an attribute Z
Schematron [3] uses a tree pattern based validation, which is charac-
terised as a two step process of identification and then assertion. Both
are done by XPath expressions (e.g. ’//node’ and ’@Qvalue &lt; 107).

Assertions and reports can be expressed and grouped into rules. A rule
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T.S. N.S. B.R. | Depth | S.N. Thrs R.TS | UT.S| R.N.S| UNS. | OM. | O.P.
Datl | Dat2 3 4 2002 | 1.78.107% | 959 42 1001 0 42 | 0.979
Dat2 | Dat3 3 4 3002 | 3.16.107% | 957 44 1001 0 44 | 0.985
Dat4 | Dat2 3 4 1258 | 1,78.107% | 212 45 1001 0 45 | 0.964
Dat4 | Datb 3 4 688 | 1,78.107° | 185 72 423 8 80 | 0.883
Dat4 | Datb 3 5 688 | 5.62.1071% | 230 27 367 64 91 | 0.867
Dat2 | Garbage | 3 4 1801 | 5.62.107% | 954 47 678 122 169 | 0.906
Cml | Garbage | 3 5 1074 | 5.62.1018 | 246 1 798 2 3 0.997
Adc | Garbage | 3 5 2983 0 2183 0 800 0 0 1
Abbrev

T.S. Training set. The dataset used to train a tree model.

N.S. “Novelty set”. The dataset that was shown to the model as novelty samples.

B.R. Branching ratio of the covering tree.

Depth | Depth of the covering tree.

S.N. Sample number. Overall number of samples in T.S. and N.S.

Thrs Threshold. Optimal threshold of probabilities for accepting/rejecting samples.

R.T.S. | Recognized training samples.
U.T.S. | Unrecognized training samples
R.N.S. | Recognized novel samples
U.N.S. | Unrecognized novel samples

O.M. Optimized Misclassification. U.T.S.4+U.N.S. is minimal using the given threshold.

O.P. Optimal performance (using the given threshold)

TABLE 3. Novelty detection. A set of samples was divided into
two parts. The first subset was used for training a tree. The
result was used for the estimation of probabilities from the other
subset as well as for probability estimation of trees from different
subsets. Optimal threshold (Thrs) values have been determined
for the different datasets.

has a context attribute (an element, which it refers to). Then, patterns
can be made from rules (these represent different kind of checks), and
a schema can be created from patterns.

Schematron builds on existing technologies such as XSLT (a Schema-
tron schema will be translated into an XSL stylesheet) and XPath.
When the XQuery proposal is ready, it will be possible to use that

language as a substitute for XPath in the identification of candidate
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objects for validation. And extensions to the XSL technology can also
improve Schematron.
In short, there are several aims which Rick Jelliffe which believed

were important during the design and specification of Schematron:

e Promote natural language descriptions of validation failures, i.e.
diagnose as well as reject

¢ Reject the binary valid/invalid distinction which is inherent in
other schema languages

e Aim for a short learning curve by layering on existing tools
(XPath and XSLT)

e Trivial to implement on top of XSLT

e Provide an architecture which lends itself to GUI development
environments

e Support workflow by providing a system which understands the

phases through which a document passes in its lifecycle
Target uses suggested by Jelliffe:

e Document validation in software engineering, through the pro-
vision of interlocking constraints

e Mining data graphs for academic research or information discov-
ery. Constraints may be viewed as hypotheses which are tested

against the available data
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e Automatic creation of external markup through the detection of
patterns in data, and generation of links

e Use as a schema language for “hard” markup languages such as
RDF.

e Aid accessibility of documents, by allowing usage constraints to

be applied to documents

XSL and its extensions

XSL [9] (with XPath) can also be used as a validation language ([57]).
One can write macro functions (jxsl:call-template; ), and use xsl’s built-
in comparison elements (e.g. jxsl:if;). Some of the advantages of using

XSL as a validation language are

e terse—the match patterns are very terse, like XML content mod-
els; declarative; simple

o fragment-friendly, since the interpretation of content models does
not depend on the document context

e widely implemented

XSL can also be extended to allow user-defined functions to be called
by the templates (JavaScript, Java functions, for example, using the
i...xsl:scripty, element, or otherwise). However, this is implementation-
dependant. Currently two different approaches were made to extend

the functionality of XSL:
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e EXSLT is an extension of XSLT which consists of a few mod-
ules of functions written in XSLT (Functions, Common, Math,
Set)[1].

e FXPath were implemented on top of XPath [2]

XQuery

XQuery [8] is an XML query language. Its expressions are based on
the XPath language, and its data model is like XML Schema’s (XML
Infoset working draft). The working group is making XPath more pow-
erful (see Schematron above), and is creating a query language, which,
like SQL, makes possible to extract information from XML documents.
XQuery is not just a simple query language: it is also a data definition
language (eg. XML element constructors are built-in, and any datatype
which can be expressed in XML Schema can be used in XQuery), and
user-defined functions can also be written.

Assertion Grammars

This document describes experimental work in progress at HP Labs
- Bristol on formal techniques for describing combinations of modular
tagsets for documents written in XML. The motivation is provided by
the increasing diversity of web browsers, running on desktops, televi-

sion, handhelds, cellphones or voice browsers.
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The goal is to provide a means for document to be described in terms
of an algebra operating over modules, which in turn are described as
collections of assertions. It is hoped that this work will provide an
interesting comparison with traditional approaches based upon Doc-
ument Type Declarations, and more recent approaches, such as the

drafts published by the W3C XML Schemas working group.
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13.1. Appendix A3: XML Comparison Tools. Comparing fea-

tures in the IBM, Sun, DeltaXML and DOMMITT diff tools

XML?

Feature | DOMMITT|IBM Sun DeltaXML
XML Oracle v2 |IBM Perl exten- | Unknown
Parser Parser XML4J sion to ex-
used by pat
tool
Output New xmd- | XUL New  diff | New attributes
format |iff nodes | (XML nodes (same names-
for diffs | (same Update (same pace as original
namespace | Language) | namespace | doc)
as original | based on |as original
doc) XPath doc)
DTD YES NO (diffs | NO DTD hand gen-
gener- not in erated by com-
ated XML pany
for  diff format)
output
Is output | YES NO YES NO
valid
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14. APPENDIX B: USED USEFUL SOFTWARE TOOLS

14.1. Appendix B1l: Tidy and Jtidy. JTidy was used to convert
html documents to XML form. This type of XML documents were
used in the early phase of our studies. We learned that these type of
documents have typically identical structures if those are downloaded
from the same site. For example, all XML documents created from
a movie database has the same XML structure. Different sites have
very different XML structure not representing any challange for the
probabilistic tree method!.

Interestingly, this html based XML case could take advantage of tag,

attribute and text based novelty detection.

14.2. Appendix B2: Matlab and JAVA. List of Java compilers
and virtual machines

A list of compilers and VMs for the Java programming language,
including short descriptions of price, supported platform and Java ver-
sion. Includes native compilers (to convert class files to executables)
as well.
http://www.mathtools.net /Java/Compilers

http://www.geocities.com/marcoschmidt.geo/java.html

1The case of many different sites should be, however different, but is, undoubtedly beyond our
computational possibilities
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Ptolemy II

The Ptolemy project studies modeling, simulation, and design of
concurrent, real-time, embedded systems. Ptolemy II is a Java-based
component assembly framework with a graphical user interface called
Vergil.
http://www.mathtools.net /Java/Simulation
http://ptolemy.eecs.berkeley.edu/ptolemyll/index.htm

Hot Picks

Run Java programs and link to Java objects directly from MATLAB
http : //www.mathworks.com/programs/javaprograms [index.html
New MATLAB Add-in for Visual Studio automatically converts your
C code to MATLAB-callable functions
http : //www.mathworks.com/programs/matlab,ddin/index.html
MATLAB Database Toolbox lets exchange data with any ODBC/JDBC-
compliant toolbox from MATLAB

http : [/ /www.mathworks.com/programs/databasetoolboz [index.html

15. ArPENDIX C: AI TooLs

This section reviews the tree probabilistic technique. For the sake of
completeness, a few selected Al methods that are considered relevant

and novel from the point of view of combined probabilistic and rule
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based identification and validation are also reviewed. The described
AT techniques are as follows: novelty detection in general (subsection
15.2), fast intelligent restart point generation for satisfiability problems,
learning parts, or subcomponents from examples to promote problem

partitioning.

15.1. Appendix C1: Learning a Tree distribution. The solution
to the ML Learning Problem has been published in [28] in the broader
context of finding the tree that best fits a given distribution P over
the dataset D. The goodness of fit is evaluated by the KullbackLeibler

(KL) divergence [73] between P and T :

(1) L(P||T) =} P(a)log i)

zeD

Let us start by examining (1). It is known [30] that for any two
distributions P and @, KL(P||Q) > 0 and that equality is attained

only for () = P . The KL divergence can be rewritten as

(2) L(P||Q) = ZP )llog P(z) — log Q(z)]

and thus

(3) L(P||Q) = ZP Ylog P(x ZP )log Q(x
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Notice that the first term above does not depend on (). Hence, min-
imizing the KL divergence w.r.t. () is equivalent to maximizing the
second term of (2) (called the crossentropy between P and )) and we
know that this is achieved for @) = P.

Now, let us return to our problem of fitting a tree to a fixed dis-
tribution P. Finding a tree distribution requires finding its structure
(represented by the edge set E) and the corresponding parameters, i.e.
the values of Ty, (2, z,) for all edges (u,v) € E and for all values z,, z,.

Assume first that the structure E is fixed and expand the righthand

side of (1):

(4) L(P||T) =) P(z)[log P(z) — log T(x)]

zeD

making use of the following steps

(5)

L(P||T) =) P(z)log P @ =Y P(z) log]] | Toipa) (@o|Zparw))]
zeD

zeD veV

(6) (P| |T Z Z P >|< log Tv|pa(v) (IEU, :Epa(v))

veV zeD

(7)

(PHT Z Z P,pa xvaxpa( ))logTv|pa(v)(xvaxpa(v))

VEV Tu,Tpa(v)
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we have
(8)
(P| |T Z Z :Epa Z F, vlpa(v IEU |:Epa ) log Tv|pa(v) (IEU |:Epa(v))

veEV Tpa(v)

In the above, H(P) denotes the entropy of the distribution P , a
quantity that does not depend on T, and P,,, P, represent respectively
the marginals of {u,v}, v under P. The inner sums in the last two
lines are taken over the domains of v and pa(v) respectively. When
v is a root node, pa(v) is the void set and its corresponding range
has, by convention, one value with a probability of Ppa(v)(2paw)) = 1.

Moreover, note that the terms that depend on T are of the form

9) = Pulpats) (%0, Tpa)) 108 Tojpa(s) (0 Tpae))

which differs only by a constant independent of T from the KL di-

vergence

(10) KL( vlpa(v ||T|pa )

We know that the latter is minimized by
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(11) Tolpa(w) (1 Tpa(w)) = Pojpatw) ([Tpa)) Y0 €V

Hence, for a fixed structure F, the best tree parameters in the sense of
the minimum KL divergence are obtained by copying the corresponding
values from the conditional distributions Pyjpe(). Let us make two
remarks: first, the identity (11) can be achieved for all v and Zpa(w)
because the distributions Ty jpa(y) = Tpa(v) are each parameterized by its

own set of parameters. Second, from the identity (11) it follows that

(12) Tw= Py V(u,v)€eE

and subsequently, that the resulting distribution 7' is the same inde-
pendently of the choice of the roots. For each structure £ we denote
by TF the tree with edge set E and whose parameters satisfy equa-
tion (12). TF achieves the optimum of (1) over all tree distributions
conformal with (V, E).

Now, with the previous results in mind, we shall proceed to the
minimization of K L(P||T) over the tree structures. First, notice that

this task is equivalent to maximizing the objective
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(13) J(E) = XxDP(z)logTE(z).

over all structures E.

Expanding the above formula and using (12) we obtain successively:

(14) J(E) = ZP( ) log T (a")
(15)

J(E) = Z Z log TE (2 2 Z(deg(v) — 1) log TE(z?)]
(16)

J(E) =Y P(z)] Y logPu(zizl) = (deg(v) — 1)log P,(z})]

i=1 (uv JEE veV
(17)
J(E) = Z ZP(zi)[long(:va:vf,)—log P,(z})~log P,(x +ZZP
(u,w)EE i=1 veV i=1

(18)

J(E) = Z ZP(zi)long +ZZP )log P,(z%)

(u,v)eE i=1 veV i=1

)log P, (

z},)
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(19)
Z ZP“” T, Ty) log P]:()I:L;] IBuIEux +ZZP ) log P, (z,)

(u,v)EE Tuy “ vEV Ty

(20) = > IL,- > H(P,

(u,v)EE vEY

Equation (15) follows from the undirected tree representation of T'Z,
(16) is obtained from (15) by taking into account (12); equation (18)
follows from (17) by performing a summation over all z € D that have
the same z,,z, and using the definitions of P — uv and P,; finally in
equation (19) the terms I, under the first sum sign represent the mu-
tual information between the variables v and v under the distribution

P:

(21) I, = Z Py (zyz,)log %

Tyly

The mutual information between two variables is a quantity that is
always nonnegative and equals 0 only when the variables are indepen-
dent.

Remark two important facts about equation (20): first, the second
sum does not depend on the structure E; second and more importantly,

the dependence of J(E) from E is additive w.r.t. to the elements of



74 XML AND NOVELTY

the set E. In other words, each edge in (u,v) € E contributes a
certain positive amount to J(E) and this amount I, is always the
same, independently of the presence or absence of other edges and of
the size of their contributions!

In this situation, maximization of J over all structures can be per-
formed efficiently via a Maximum Weight Spanning Tree (MWST) al-
gorithm [113] with weights Wy, = I,,,u,v € V.

The MWST problem is formulated as follows: given a graph (V, E)
and a set of real numbers, called weights each corresponding to an edge
of the graph, find a tree (V, E), E € E for which the sum of the weights
corresponding to its edges is maximized. This problem can be solved
by a greedy algorithm that constructs the tree by adding one edge at a
time, in decreasing order of the weights W,,. There are several variants
of the algorithm: the simplest one, called Kruskal’s algorithm, runs in
O(n*logn) time. Note that if all the weights are strictly positive, a tree
with the maximum number of edges and p = 1 connected components
will result. If some of the weights W, v are zero, it is possible to obtain
trees with more than one connected component. More sophisticated
MWST algorithms exist (see for example [113, 112, 45, 43, 105] ) and
they improve on Kruskal’s algorithm on both running time and memory

requirements. However, the running time of all published algorithms
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Algorithm Treelearn

Input Probability distribution P over domain V
Procedure MWST( weights ) that
fits a maximum weight spanning tree over V.

1. Compute marginals F,, P, for u,v € V

2. Compute mutual information I, for u,v € V

3. Call MWST ([,,) that outputs the edge set E
of a tree distributionT.

4. Set Ty, = Py, for (uv) € E.

Qutput T

TABLE 4. Pseudo-code for the tree learning algorithm.

is at least proportional to the number of candidate edges (E). In our
case, this number is equal to n(n — 1)/2 since all pairs of variables
have to be considered. Hence the best running time achievable for a
MWST algorithm will be O(n?). Henceforth, we will assume that the
MWST algorithm runs in O(n?) time and will not further specify the
implementation. All of the above are summarized in the TreeLearn
algorithm 4

The algorithm takes as input a probability distribution P over a
domain V and outputs a tree distribution T that minimizes the KL
divergence K L(P||T). The running times for the algorithm’s steps are
as follows:

steps 1,2. For steps 1. and 2. (computing the marginals and the mu-
tual information for all pairs of variables) the running time is dependent

on the representation of P . But, generally, it should be expected to
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be On?, since there are n(n — 1)/2 mutual information values to be
computed.

step 3. The MWST algorithm takes O(n?) operations (or O(n? logn)
in Kruskal’s variant).

step 4. This step comprises only O(nrrax?) assignments (remember
that |E| < n). Hence, the total running time of TreeLearn O(n? +

nrarax’) or O(n?) if we consider 7y 4x to be a constant.

15.2. Appendix C2: Connectionist novelty detection. Genera-
tive networks

We investigate generative auto-associative networks. In such net-
works, channel capacity constraints form the main obstacle for effec-
tive information transfer. Robust and fast information flow processing
methods warranting efficient information transfer, e.g. grouping of in-
puts and information maximization principles need to be applied. For
this reason, indepent component analysis on groups of patterns were
conducted using (a) model labyrinth, (b) movies on highway traffic
and (c) mixed acoustical signals. We found that in all cases ’familiar’
inputs give rise to cumulated firing histograms close to exponential dis-
tributions, whereas 'novel’ information are better described by broad,
sometimes truncated Gaussian distributions. It can be shown that

upon minimization of mutual information between processing channels,
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noise can reveal itself locally. Therefore, we conjecture that novelty -
as opposed to noise - can be recognized by means of the statistics of
‘neuronal firing’ in generative auto-associative architectures.

Generative networks work by bottom-up processing of the input pro-
viding an internal representation and then top-down processing of the
internal representation by means of the long-term memory [52, 49, 99,
80, 81]. This means that sensory processing is not simply coding, but
also involves decoding (i.e., reconstruction). Such connectionist sys-
tems are called reconstruction networks [48, 47]. The internal repre-
sentation is used to generate the reconstructed (expected) input and
error is produced between the expected input and the actual input.
Finally, this error is used to correct the values of the internal represen-
tation. The main objection against such iterative schemes is that those
may not be fast enough [68]. According to [68] speed favors feedforward
networks and may represent a challenge for iterative schemes.

On the other hand, iteration is not an obstacle for processing data if
decoding is perfect. This is the case when coding and decoding invert
each other [81]. Reduced to triviality, the steps of the iteration are as

follows:

e Network starts with zeroed internal representation and with ze-

roed reconstructed input.
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e Input is provided.

e Error becomes equal to the input.

e Coding gives rise to the internal representation.

¢ Reconstruction inverts (decodes) the internal representation.

e Error disappears.

. In turn, feedforward networks and generative networks will have the
same one-step delay in the forming of the internal representation.

If we consider generative schemes then the optimization information
transfer is of immediate consequence. Loss of information in bottom-up
processing gives rise to deteriorated reconstruction. Efficient use of the
channel capacity in the bottom-up (coding) and top-down (decoding)
processes is a necessity in reconstruction networks.

Efficient Coding for Generative Networks

Efficiency is related to the possible speed of the whole coding-decoding
process and is influenced by the capacity of the channels. Channel
capacity measures the maximum rate (pulse/s, bit/s) for the given
channel. In most cases channel capacity forms a hard constraint (the
increase of the number of channels is costly), so we need other tools

to make information transfer efficient. According to Shannon [104, 30]
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optimal coding can be achieved by grouping the atomic units of the in-
puts first and by coding these new blocks instead of coding the atomic
units themselves.

We argue that concatenation of disjoint inputs may be a smart trick
applied. For example, inputs from different modalities, or temporal
sequences, or both, i.e., spatio-temporal sequences can be grouped to
improve the efficiency of coding.

The efficiency can also be improved by minimization of the mutual
information between the processing channels. It is well known (see,
e.g., [30]) that for statistically independent components the maximiza-
tion of information transfer induces the minimization of mutual infor-
mation between processing channels. Thus, we ought to consider the
minimization of mutual information between processing channels, and
processing needs to be shaped by independent component (IC) analy-
sis (ICA) [15, 59, 53]. IC analysis in the linear case corresponds to a
matrix transformation. Given a set of inputs, the components of the
transformed input set, i.e., the components of the bottom-up processed
input, will be as independent as possible in statistical sense. It is worth
noting that ICA can be formed by means of local (Hebbian) learning
rules, which makes it appropriate for neuronal modeling [53, 65].

Modeling Methods
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We shall examine how the bottom-up processed input looks like upon
minimization of mutual information. We shall use temporal sequences
as inputs. A neural network accepts vector-valued inputs. We inter-
pret 'sequences’ by concatenating a few (say k) temporally subsequent
inputs into a (k times) longer input vector. The method will be called
embedding and the depth of the concatenation (i.e., k) will be the em-
bedding dimension. After embedding, we present this new vector to the
network that performs independent component analysis. Rows of the
derived matrix correspond to vectors in ’sequence space’. These rows
will be called temporal independent components (TICs) and the algo-
rithm will be called TICA . Computation of the outputs of the matrix
for a given input data will be called ’testing’. We make the following
distinction between ’familiar’ and 'novel” inputs. Inputs (examples) are
divided into categories. For each category, respective bottom-up pro-
cessing matrices are developed by means of TICA. TIC analysis in each
category is performed by means of the training samples, a randomly
selected subset of the examples of the category. Testing is performed
by means of the examples not used for training. To each bottom-up
processing matrix, we have within-category testing samples that will
be called 'familiar samples’. We can also test samples from other cat-

egories that will be called 'novel samples’.
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FIGURE 17. Traffic example

Hexagonal windows of 169 pixels in different positions (hexagonal
areas in subfigure A) were used for creating the familiar and unfa-
miliar data sets. (B) Distributions of TICA outputs. 7 inputs were
concatenated to form an embedded input. Diagonal (off-diagonal)
histograms describe testing for familiar (novel) inputs. The ne-
gentropy (N) values [30] of the histograms (discretizations of the
rectified distributions) are given within each subfigure.

In our computer studies, the FastICA [53] software package was used
because FastICA has no adjustable parameters. It is of equal impor-
tance that FastICA makes use of negentropy, a quantity, which is in-
variant for invertible linear transformations. Upon minimization of
mutual information, directions with roughly optimized negentropy val-
ues are provided. In larger simulations, PCA preprocessing was used
for dimensionality reduction [46].

Results

TICA was performed on temporal sequences taken from different
data sources. Two examples are shown in Figs. 17, 18.

In the first example a movie database was used (Figure 17). The

movies were taken from a car in traffic. We used two input sets cut from
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FIGURE 18. The case of acoustic signals.

(A) Samples are about 250 ms in length and are from different
sources (e.g. music, sounds in a forest or sounds of a whale). (B)
TIC output distributions. The training set for the TICA matrix
was created from a mix of three samples out of the six signals.
Mixing of the other three samples made the ’novel’ inputs. Em-
bedding depth is 16. The number of TICs is thus 3x16=48. Here
- in contrast to Figure 17 - the histograms of randomly selected
individual outputs are shown. Diagonal (off-diagonal) blocks of
histograms represent familiar (novel) tests.

the same movie in different positions. Upon TIC analysis, histograms
of familiar outputs are narrower (sparser) than histograms on novel
outputs. This observation is numerically confirmed by the calculated
negentropy values on the rectified distributions.

In the other example acoustic signals were used (Figure 18).

Discussion
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In a hierarchical system, noise at one level may be grouped into novel
information at another level. In fact, the optimization of information
transfer requires that frequent symbols need short codes (low level in
the hierarchy), whereas less frequent symbols need longer codes (higher
levels in the hierarchy). A less frequent symbol may seem nothing but
noise at low levels. ICA and TICA are optimal to make this distinc-
tion. Denoising (noise filtering) of IC outputs can be approximated
by diminishing small amplitude outputs [56]. In turn, noise filtering is
local. Reconstruction is performed by high activity IC outputs. Noise
appears in the reconstruction error. This reconstruction error can be
analyzed by higher levels, as suggested in [100]. Recognition of nov-
elty is the task of a higher level and works on large reconstruction
errors (large residuals) in a given area. Our simulations imply that the
recognition of novelty is ’easy’ and can be instantaneous in optimized
generative networks. We found on different examples, that a novel
(not yet seen, not yet optimized) input gives rise to distinctly different
statistical properties at the level of internal representation.

Computational considerations, such as entropy minimization, factor
analysis, or sparse coding lead to representational schemes that opti-

mize information transfer [12, 14, 37, 41]. Factor analysis and ICA have
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been considered as the main strategy of encoding sensory information
for a long time.

We stress two things. The emphasis is on forming blocks of symbols,
i.e., concatenating in time, grouping in space, and grouping between
different modalities. Secondly, none of the test samples was used dur-
ing training, but some represented similar, whereas others represented
dissimilar statistics. ICA is working on the higher order moments of
the activity distribution and tends to make this distribution narrower
(sparser). The learned statistics is thus expected to be sparser. Statis-
tical properties can form the basis of novelty recognition in optimized
generative networks. This feature is not specific to generative schemes
[98]. A feedforward network that optimizes information transfer will

behave the same way.

15.3. Appendix C3: Pattern completion with probability esti-
mation. In most pattern recognition problem noise filtering is of cen-
tral issue. The separation of noise from data is, however, problem- de-
pendent. In information theory, noise is considered structure-free, i.e.,
of maximal entropy. (For continuous variables, Gaussian distribution
of unit variance has the maximal entropy). The recently introduced
sparse code shrinkage (SCS) algorithm [54], aims to separate Gaussian

noise from structured components. This novel approach can be seen as
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a generalization of wavelet denoising [54]. The generalization concerns
the process of the learning of the underlying basis set given an ensem-
ble of inputs and then performing denoising, alike in wavelet bases.
SCS performs well on inputs that are linearly mixed from independent
sources. SCS originates from independent component analysis (ICA,
also called blind source separation, or demixing), which has almost a
ten year history [60, 29, 16, 11, 85]. The objective of the mathemat-
ical derivations of ICA algorithms is to optimize information transfer
for linearly mixed inputs [55]. ICA removes higher order correlations
from components. At the same time it is not known how the ICA algo-
rithms perform in general information transfer optimization problems
(i.e., without this independence assumption). ICA transformed infor-
mation has limited power in pattern completion problems that assume
correlations between components.

Decomposition of multivariate data into correlating sub-structures
is needed in pattern completion problems, e.g., for occlusion. The
objective of learning is to seek sub-parts in individual inputs of an
ensemble to enable inferencing. A powerful recent technique is non-
negative matrix factorization (NMF, [76, 77]), which aims to find sub-
structures in a given set of inputs, with each input built from non-

negative components.
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Architecture

SCS is a bottom-up transformation that aims to recover the original
sources given the mixed input. In case of independent sources cov-
ered by additive Gaussian noise, SCS can recover the original inputs.
NMF, on the other hand, can be seen as a top-down generative algo-
rithm that optimizes the internal representation in order to minimize
the reconstruction error between input and generated (reconstructed)
input. The two algorithms can be merged into a single auto-associative
architecture as shown in Fig. 19(A). Here, W denotes the bottom-up
ICA transformation that together with denoising produces the MMI
components, whereas Q is the NMF generative matrix.

We investigated learning capabilities and working performance of the
proposed architecture. It exhibited good parameter-free performance
under the following conditions:

First, bottom-up learning The MMI components were developed us-
ing the non-linear SCS method (see Appendix). The bottom-up demix-
ing matrix is learned in this phase. This is a single parameter proce-
dure. Only non-zero values of this parameter, the kernel width d, can
lower mutual information.

Second, top-down learning: Inputs are filtered by the bottom-up

matrix W and the SCS non-linearity is not applied. The linear outputs
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are multiplied by the pseudoinverse W of matrix W (which is equal to
WT for our case [54].) (In other words, the input is projected into the
SCS subspace defined by the row vectors of matrix W. Each projected
input is then shifted and scaled (the lowest and the highest pixel values
are made equal to 0 and 1, respectively). These bounded and non-
negative inputs are subsequently used in batch mode to compute the
NMF basis set (or NMF matrix, Q).

Working phase: Inputs are projected into the SCS subspace as be-
fore. Hidden components h are computed via the NMF iteration pro-
cedure (Inpr) keeping the Q matrix fixed. The iteration minimized
the mean square of the reconstruction error. Reconstructed input X is
computed by multiplying hidden vector h by NMF matrix Q.

A hierarchy is built by combining hidden representations into blocks.
Forming of blocks can take advantage of neighboring relations, e.g.,
prewired neighbors of topographical maps). A two layer architecture
is shown in Fig. 19 (B). First approximation of the hidden values are
computed by the first layer. These hidden values make up the input
of the second layer. The reconstructed input of the second layer then
overruns the hidden values of the first layers. This leads to corrected
reconstructed inputs X at the first layer.

The bar example
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F1GURE 19. Graphical representation of the algorithm.
(A): x,s,h and %: input, shrunk (denoised) ICA components, hid-
den variables, and reconstructed input, respectively. W, W, Q
and Iy pr denote demixing matrix, pseudoinverse of the demix-
ing matrix, NMF matrix and NMF iteration, respectively. Arrow:
linear transformation, arrow with black dot: linear transformation
with component-wise non-linearity (shrinkage kernel), lines with
two arrow-heads: iteration. The algorithm was utilized in a two
phase mode (see text for details).

(B): h: reconstructed input of second layer (i.e., hidden variables
of first layer ‘according to’ the second layer). Two-layer hierarchy.
Lower layers provide inputs (their hidden variables h) for higher
layers. Reconstructed input of second layer overruns hidden vari-
ables at first layers. Hidden variables are subject to NMF iteration.
Grey arrows represent identity transformations (7).

The following two-bar example is used for demonstration purposes.
The tasks are identification and reconstruction of bars on gray-scale
images while (i) each input is composed of two or more orthogonal
bars, (ii) noise is present in the sense that input is covered by additive
Gaussian noise of zero mean and the variance as a free parameter, and
(iii) in the hierarchical setting the bars may have missing parts. We

studied the effect of the signal to noise ratio (SNR) on the quality
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of the reconstruction. The ‘original’ inputs consisted of 2 or more
white bars (represented by 1’s for each vector component), whereas
the background was black (0 value vector component). The inputs were
corrupted by additive Gaussian noise with different standard deviations
(STD). For our purposes, signal-to-noise ratio (SNR) will be defined as
the ratio between the maximal pixel value of the true noise-free input
(i.e., 1.0) and the STD of the additive Gaussian noise. An example
of the noise-free perfect input togther with its noisy version are shown
in Fig. 20(A) and (B). The reconstructions of the input are shown in

Fig. 20 (C)-(E). See the figure caption for details.

() ) © () B

F1GURE 20. Input and its reconstructed forms
(A): perfect input without noise, (B): noise covered input, (C):
reconstructed input (RI) with SCS, (D): RI with NMF, and (E):
RI with combination of SCS and NMF. Signal-to-noise ratio is:
0.83. Note the improved reconstruction for the combined method
compared to single SCS or single NMF algorithms.

Details of the SCS procedure are presented in the Appendix. In the

NMEF iteration the Euclidean cost function was used [76].
Simulation results are shown in Figs. 20, 21 and in Fig. 23. Figure 20

(B) depicts one of the inputs used for training and testing. The SCS,

NMF, and combined SCS and NMF reconstructed inputs are shown
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in Fig. 20(C)-(E). NMF is not capable to work with such high noise
content, reconstructed input is mostly noise. Instead, the combined
method ‘predicts’ higher amplitudes for pixel values corresponding to

the 1’s of the original (clean) input.
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FIGURE 21. Single layer basis sets for SCS alone (A), NMF
alone (B) and for the NMF using SCS outputs in linear
mode (C).

Inputs have 256 (= 16 x 16) dimensions. Number of filters: 32 (=
2 x 16). For each method, all 32 filters are depicted. SNR=0.67

Basis sets for the three methods are shown in Fig. 21. According
to the figure, NMF is not capable to overcome the high noise content,
whereas SCS discovers the high-order line-like correlations in the input

but is not capable to decompose the input into subcomponents for the
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chosen noise parameters, whereas the combined method shows robust-
ness against noise and is able to extract subcomponents (single vertical
and horizontal lines).

Quantitative dependencies on noise and shrinkage parameter (kernel
width of the SCS, see Appendix) are shown in Fig. 22. Noise resistiv-
ity is depicted in Fig. 22 (A). The figure shows the root mean square
(RMS) error between perfect (noise-free) double-bar inputs and recon-
structed inputs for the different methods. Results are superior for the
combined method. SCS performs badly, because SCS could not dis-
cover the underlying structure and the SCS basis vectors can not cover
all the possible inputs. Performance of NMF is better in spite of the
fact that NMF basis vectors can not represent the underlying struc-
ture for noisy inputs. Another test concerned performance on perfect
(noise-free) single-bar inputs. RMS reconstruction error versus noise is
depicted for SCS, NMF and for the combined method in Fig. 22 (B).
RMS error is small but non-zero, because the filters developed on noisy
inputs are not perfect. As before, the combined method is again the
best in this case. Fig. 22 (C) shows the dependence of the RMS on the
kernel parameter d for different signal-to-noise levels (see Appendix).
For all cases, the combined method has significant advantages because

of two reasons: It filters out the noise and completes the reconstructed
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input according to the information encompassed by the NMF matrix

and used in the NMF iteration. In the working phase the sparsifying
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FIGURE 22. Parameter dependences.

Colors denoted different methods. SCS: cross, NMF: star, SCS
and NMF: dot. (A) Dependence of RMS reconstruction error on
standard deviation (STD) of the noise, (double-bar inputs) (B)
RMS reconstruction error for noise-free perfect single bar inputs
versus STD of noise during training phase (single-bar inputs), and
(C) RMS reconstruction error for SCS (crosses) and for the com-
bined method (dots) versus kernel width for the noise-free case
(black lines) and for noisy input (grey lines). STD=1.5. Note the
remarkable independece on the kernel parameter, the single ad-
justable parameter for a given architecture.. Kernel width for (A)
and (B): 0.06

non-linearity of the SCS transformation was not used, the SCS stage
worked in linear mode. This operation was chosen for reproducibility
reasons: we found that the non-linearity (i) does not improve results
significantly, but (ii) introduces irregular parameter dependences (not
to be detailed here). SCS developed different filters for different kernel
width values. These linear filters (that were formed with different ker-
nel width values) together with the NMF iteration reduced the noise

and showed robust insensitivity to the kernel width. This is the com-

bined result of the low dimensionality of the sub-structures (32) relative



XML AND NOVELTY 93

to the dimension of the input (256), and the excellent filtering capabil-
ities of the NMF iteration.

In completion tasks we compared the efficiency of the combined
method in a hierarchy. We studied the case of a two layer hierar-
chy (Fig. 23), with the first layer consisting of several compartments as
shown in Fig. 19 (A), each working on a localized subarea of the input,
and the second layer collecting the results from the first layer over the
entire input range as shown in Fig. 19 (B). Two types of inputs were
generated. The upper row shows an example when the original (noise-
free) input has missing pixel components. The lower row depicts the
case when full layer 1 subcomponents are missing. Noise-free, incom-
plete inputs are shown in column (A). Visual examination reveals that
input reconstruction improves both for the missing pixel case as well
as for the missing subcomponent case.

Mathematical details

The combined algorithm can be summarized as follows. Let x € R”
denote the input to the system. W denotes the SCS (denoising) filter
and Q denotes the NMF filter. Tuning equation for the SCS filter is
as follows:

(22) W(k+1) = W(k)—i—)\(k)q(W(k)x)xT—i—%(I—W(k)W(k)T)W(k)
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(A) (B) (©) (D)

F1GURE 23. Improved noise filtering and pattern comple-
tion in the hierarchy.

Subarchitectures of the first layer have 6 x 6 = 36 input dimen-
sion. Dimension of NMF hidden vectors of first layer units is 12.
First layer is made of 3 x 3 = 9 units. Input of the second layer
has 108 dimensions. Dimension of the hidden vector of the second
layer is 36. Upper row: Pixels of the inputs are missing. Bottom
row: Pixels and sub-components of the inputs are missing. (A)
Original input with missing pixels and sub-components, (B) input
to the architecture, (C) reconstructed input using first layer recon-
structions only, (D) reconstructed input using the full hierarchy.
SNR is 0.5.

where k is the number of the training session, A(k) is the learning rate,
and q(.) denotes a component-wise non-linear function of the following
form: g;(u) = —u;exp(—u?/d?), that is the non-linearity is applied
separately to each component of the vector argument. Assuming that
A(k) satisfies the Robbins-Monro condition, this set of equations has a
single parameter, the kernel width, d [54].

For NMF the multiplicative update rules (a dual iteration) were used

to minimize the Euclidean distance based cost function. These iterative
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equations were used in batch mode for learning:

o) g (@),

(23) H;;(k + 1) = Hy;(k) (QT (k)Q(k)H(E));
et — o (VETE),

(24) Q;; (k + 1) Qi; (k) (Q(k)H(k)HT(k))z]

where columns of matrix H represent the hidden representation vectors,
i=1,...,n (n is the dimension of the hidden vector), j =1,...,m (m
is the number of inputs). Matrix H is formed by iteration 23. This
iteration makes use of the pseudoinverse W+ of W: V; = WS,
where S; denote the j™ output of the linear SCS transformation. In
the learning phase both equations 23 and 24 are used for the NMF
iteration. In the working phase only the first equation is used for single

inputs and the SCS and NMF matrices (W and Q) are not modified.

15.4. Appendix C4: Fast solution to the satisfiability problem.
One of the most fundamental activities in an engineer’s life is to find
good, probably the best (i.e., optimal) choice of different alternatives
in situations offering many alternatives while respecting certain limita-
tions. Given a problem one usually evaluates the possibilities according

to some strategy and finally selects one, which seems optimal for him.
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In engineering the problem of finding the best possible answer from
a large space of possible answers is called global optimization. Formally
speaking a global optimization task consists of the following tuples: a
state space X together with a scalar objective function Obj : X — R
used for assessing the states. Our goal is to find the “best” state
z* € X, which minimizes? Obj, that is, Obj(z*) < Obj(z) Vz € X.

If the state space is small, then z* can be trivially obtained by ex-
haustive search, otherwise special knowledge or some heuristics have to
be utilized for performing effective partial search [17]. Many practical
combinatorial optimization problems in engineering where X is finite,
but enormous in size fall into the class of NP-Hard problems [31], [112],
to which no efficient exact solution algorithm is known.

One possibly adapts the solution algorithm according to his best
knowledge in order to incorporate his special “insights” regarding the
problem. The main problem comes from the fact that the true nature
of the problem can be very well hidden behind the objective function,
therefore searching only by objective function can be very inefficient.

In the theory of Reinforcement Learning [110] the fundamental in-
strument in decision making is the so called evaluation function, or

shortly wvalue function. It maps features of a given state to a single

2In the followings when we speak about optimization, we will always assume minimization, unless
explicitly noted.



XML AND NOVELTY 97

scalar value that gives us the “promise of the state” with respect to
the solution to the problem [20]. Obtaining this mapping is not a
straightforward task. The good news is that evaluation functions can
be learnt automatically [110], [20], [22].

One of the recent advances in this field is the algorithm STAGE [20].
It is a local search (LS) based optimisation tool, that falls into the class
of multiple-restart local search algorithms [17]. Its novelty is the use
of value function approximation to find promising restart state such
that let the chance of finding a global optimum during the next LS
be the highest possible. To achieve this STAGE maintains an approz-
imation of the wvalue function of the states. The state with the best
value function is the candidate for the next restart. This algorithm per-
forms surprisingly well on many classical optimisation problems, such
as bin-packing, VLSI routing, geographic cartogram design, binary sat-
isfiability, etc [20], [21], [22].

STAGE (a function approximator based problem solver) was applied
to different problems. First, results on a benchmark CNF database
(ftp://dimacs.rutgers.edu/pub/challenge/satisfiability /benchmarks/cnf/)
are shown and discussed. See results below: Figure 24 provides a view
why sweeping (longer and longer) randomly restarted search instants

are suggested by the Cornell group. If good result can be found soon
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F1GURE 24. Results with STAGE and it parallel form on a
parity problem from benchmark from DIMACS

Upper sub-figure: Stage alone. Lower sub-figure: Up to im-
provement step number 4 x 10° the runs are equivalent to 100
parallel Walksats. If those Walksats were run parallel then the
results would be the same upon two orders of magnitude shorter
computation time. In fact, Walksat stops improving at around
2 x 10%, i.e., much sooner than step no. 4 x 10°. At step 4z10°
STAGE is turned on and intelligent restarts are generated.

— then go for it! However, random restarts (RR) correspond to gam-
bling. If there is a structure in the problem, RR has no strategy to
find it. Function approximator (FAPP) methods combined with RL
technology can discover and make use of the structure. The figure de-
picts the results of a quadratic FAPP that with an approximate and fast
RL method (STAGE) may improve the results considerably. Database:

ftp://dimacs.rutgers.edu/pub/challenge/satisfiability /benchmarks/cnf/
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F1GURE 25. Results on aim-x-y-z-’text’ problems
Comparisons with CPLEX, a commercially available Integer Linear
Programming routine.

Problems: parl6-1, par32-1-c. Larger dataset was tried on the ‘aim’
problems from database. See Figure 25. Results on aim-x-y-z-'text’
where x,y and z are number. x is the number of clauses, y is the num-
ber of the variables, z is the number of the problem within category
are depicted in Figure 2. We used clauses with 'text’=yesl, which
means that the problem can be solved. The figure shows the best and
the worst CPU times for 4 CNFs randomly selected for each category.
CPLEX shows faster performance for smaller problems, whereas there

is a clear advantage for STAGE on larger problems.
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One may ask the following question: ‘What types of data deems
appropriate for this methodology?’ Also, what data would be inappro-
priate?

In my view, no definite limitation can be given. ‘Hard problems’ can
be clearly defined (see later). Reinforcement learning (RL) equipped
FAPP is a general methodology for continuous variables and it suits —
as demonstrated — satisfiability problems, too. It has the capability of

adding heuristics. Heuristics means:

e deterministic state-action pairs, i.e., rules that can not be mod-
ified,

e deterministic state-action pairs, i.e., rules that can be modified,

e stochastic state-action pairs, i.e., rules that can be modified in
risk sensitive way,

e model, including differential equations - spatio-temporal priors.

‘The hard part of the problem’ is to learn features. A feature is a
(non-linear) combination of variables that decreases search space in an
efficient manner. The method can include such features, these features
can be ‘wired-in’ and can be, possibly, learned. No method has been
given for the automatic discovery of features. In the examples given,

we used no feature beyond the objective, the number of clauses that
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have been satisfied. Demonstrations, in turn, are clean comparisons
and are not corrupted by ‘pre-processing’.
Given the importance of feature extraction, I shall elaborate on this

issue in Appendix refss:Acomplete

16. APPENDIX D: INTERNET CRAWLER

The number of documents on the world-wide web is way over 1 billion
[35]. The number of new documents is over 1 million per day. The
number of documents that change on a daily basis, e.g., documents
about news, business, and entertainment, could be much-much larger.
This ever increasing growth presents a considerable problem for finding,
gathering, ordering the information on the web. The only search engine
that may still warrant that the information it provides is not older
than 1 month is AltaVista®. However, the number of indexed pages on
Altavista is about 250 million documents. Google?, on the other hand,
is indexing about 1,300 million pages, but Google does not warrant any
refresh rate on those documents.

The problem is complex: These search engines are not up-to-date
and information gathering is not efficient with these engines. Search

engines may offer too many documents; sometimes on the order of

3http://www.altavista.com
4h‘c‘cp://wvvw.google.com
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hundreds or many thousands. Many of the pages form traps, e.g., by
making use of particular (sometimes fake) keywords, or being simply
collections of documents indexed in every ‘dimension’ of the web.
Specialized crawlers, possibly personalized crawlers are in need. This
problem represents a real challenge for methods of artificial intelligence
and has been tried by several research groups [27, 33, 24, 87, 71, 74,
88, 95, 96]. One of the first attempts in this direction was made by
Chakrabarti et al. [25] who put forth the idea of focused crawling.
To understand the idea, let us consider crawling in general. Assume
that you are at a node of the web. This node has been analyzed and
you have what to do next. It is very possible that relevant informa-
tion can be found in the immediate neighborhood of this node. In
turn, you download all the documents next to you and start to ana-
lyze those documents. Doing so, you may found relevant documents
or may not. When you are done you have the option to download all
the documents that are two steps away from you and to analyze those
documents. This procedure is well known in the AI literature and is
called breadth first technique. Although the number of nodes and the
number of documents on the world-wide web is huge, still, taking an-
other viewpoint, the world-wide web is ‘small’: It is small in terms of

the shortest paths between nodes. Distance between can be defined
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by The shortest path between two nodes can be defined as a kind of
distance between them. Given this distance, one may talk about the
diameter of the WWW. The WWW had about 800 million nodes in
1999 and the diameter of the web was around 19 [10]. In turn, breadth
first search has an enormous burden and should be avoided. If compu-
tation power, or communication bandwidth, or both are limited, then
at one point breadth first search needs to be abandoned and a decision
is to be made about where to move next. To make a move to a node the
value of that node needs to be estimated from the point of view of the
search problem. In the focused crawling approach, an attempt is made
to classify the content of the document from the point of view of the
search topic. If the document falls into the search category then the
document is downloaded and the links of the documents are followed.

It has been recognized by Diligenti et al. [35] that searched informa-
tion on the web is typically hidden. One of the reasons for this hidden
property is that we need to search (the location of the information is
not apparent for us) and our search is influenced, sometimes derailed
by direct and indirect advertisements. Another reason is that sites of
particular interest may have a lower number of directed links then sites

of general interest. In turn, we might face the ‘needle in the haystack’
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problem with the haystack being sites on general interest. The hidden
property is thus the implicit consequence of our particular interest.
Let us consider sites dealing with support vector machines (SVMs).
Sites about SVMs are not typical on the web. Not all sites dealing with
SVM are linked. In turn, focused crawling could be rather inefficient
and this direct search method for SVM sites might fail. On the other
hand, most of the SVM sites are within (i.e., linked to) academic en-
vironments, sites dealing with information technology and these topics
are much more general and might have much more links and a much
higher ‘visibility’. In turn, searching for the environment of SVM sites,
could be much more efficient. The environment of the document, i.e.,
documents that are one step away, documents that are two steps away,
etc., form the ‘context’ of the document. The idea is that when we
search for a document we shall encounter the environment of the doc-
ument first. In turn, we might as well search for the environment of
the document first. This is the idea behind ‘context focused crawling’
(CFC) [35]. CFC — to our best knowledge — is superior to other crawl-
ing techniques to date. The CFC idea, which is trivial for worlds of
small effective dimension (i.e., for graphs with small branching ratio),
could be criticized for the case of small worlds (i.e., worlds of high ef-

fective dimension) when documents — on average — are about as far as
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the environment of the document. However, the question is intriguing,
because the visibility (as defined above) could be much less for searched
documents than that of the environments of the searched documents.

The problem is that environments may differ. Good performance on
the estimation of the value of one environment could be misleading on
the estimation of another. In turn, the estimation whether to stay and
download at a given site or to do not download but move further can
be seriously jeopardized without adaptation. Given the high branching
ratios at most of the sites, such adaptation could be performed at any
of the sites, provided that the learning procedure is fast. Although
value estimation has not been found particularly efficient for searching
the world-wide web [101], this is not against value estimation in gen-
eral, but calls for the improvement of the feature extraction utilized.
Here we show combine machine learning technologies for better feature
extraction on the web.

Preprocessing of texts

There is a large variety of methods that try to classify texts [89, 70,
19, 39, 66, 13, 23, 50, 69, 94, 90, 91, 51, 97, 61, 116, 117, 58, 118, 36].
Most of these methods are based on special dimension reduction. First,
the occurrence, or sometimes the frequency of selected words is mea-

sured. The subset of all possible words (‘bag of words’ (BoW)) is
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selected by means of probabilistic measures. Different methods are
used for the selection of the ‘most important’ subset. The occurences
(0’s and 1’s) or the frequencies of the selected words of the subsets
are used to characterize all documents. This low — typically 100 — di-
mensional vector is supposed to encompass most of the information
about the type of the document. Different methods are used to derive
‘closeness measures’ between documents in the low dimensional spaces
of occurence or frequency vectors. The method can be used both for
classification, i.e., the computation of decision surfaces between docu-
ments of different ‘labels’ [19, 39, 58, 97] and clustering, a more careful
way of deriving closeness (or similarity) measures when no labels are
provided [89, 66, 51, 61, 117].

We tried several BoW based classifiers and found that the tried meth-
ods can not classify web documents over 50% for the ‘Call for Papers’
(CIP) problem®. CfP is considered a benchmark classification problem
of documents: The ratio of correctly classified and misclassified doc-
uments can be automated easily by checking whether the document

has this three word phrase (i.e., call for paper) within the document or

5The CfP problem is defined by deleting the phrase ‘call for paper’ from the document, executing
search on the internet and considering each document that contains the phrase ‘call for paper’ a
‘hit’.
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not. We found, in agreement with published results [39], that super-
vised SVM classification method is simple, fast and is somewhat better
than Bayes classification.

Classification

The SVM classifier is a form of classifiers that has favorable gen-
eralizing capabilities [115, 107, 67]. Examples had been collected for
training. Other classifiers could be used, too. The SVM classifier was
chosen because of its superior generalizing capabilities and because it
has no adjustable parameters and, in turn, parameter adjustments are
simplified for SVM. The trained SVM was used soft mode. That is,
the output of the SVM was not a decision (yes, or no), but instead the
output could take continuous values between 0 and 1. A saturating sig-
moid function® was used for this purpose. In turn, (i) the non-linearity
of the decision surface was not sharp, (ii) at around the decision surface
each classifier provides a linear output proportional to the ‘distance’
from the decision surface, and (iii) this distance is bounded by the sig-
moid function. These distances can be considered as distinct yardsticks
working on distinct features. A subsequent algorithm, the value of each
yardstick can be estimated.

Value estimation

6 _ 1
output = 1+exp(—Axinput)
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There is a history of value estimation methods, called reinforcement
learning [72, 93, 108, 119, 103, 82, 32, 62, 102, 79, 114, 18, 84, 110,
111, 109, 106, 34]. In our approach, value estimation plays a central
role. Value estimation works on states (s) and provides a real number,
the value, that belongs to that state: V(s) € R. Value estimation is
based on the immediate reward (e.g., the number of hits) that could be
gained at the given state by executing different actions (e.g., download
or move). The idea is to estimate long-term cumulative reward based
on an action—to—probability mapping (called policy) that may differ for
each state and that determines the probability distribution of possible
action choices in each state. Policy improvement and the finding of the
optimal policy are central issues of RL. The problem can be simplified
if all possible future states are available and can be evaluated. This is
our case: We do not need to evaluate the policy, nor to improve the
policy. Instead, we evaluate all neighboring states of the actual state
and move to (or download) the most promising one. We follow all of
the links of a given document and evaluate the documents at the links.
The action that we shall execute is the most ‘promising’ action; we
shall move to the most promising next link. If the link is a document
then we download that document. If the document contains the phrase

‘call for papers’ then the learning system incurs immediate reward of
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1. If a downloaded document does not contain this phrase then there
is cost (the immediate reward is negative) of -0.01. These numbers are
rather arbitrary. The relative ratio between reward and cost and the
magnitude of the parameter of the sigmoid function matters. These
parameters influence learning capabilities. From this point of view our
results may not be the best possible that can be achieved by this hybrid
technology.

Value estimation makes use of the following upgrade
(25) VT (s) = V(sg) + ax* (repr + 7% V(ss1) — V(st))

where « is the learning rate, 7,11 € R is the immediate reward, 0 <
v < 1 is the discount factor, and subscripts ¢ = 1,2,... indicate action
number (i.e., time). An excellent introduction to value estimation by
means of parameterized function approximators can be found in [110].
Concerning technicalities of RL, (a) we used eligibility traces, (b) we
did not use of explorative steps because the environments can be very

different, and (c) approximated the value function as

(26) V(s) ~ Zwi o (output;)
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F1GURE 26. Context of the document
Document and its first and second ‘neighbors’.

where o(.) denotes the sigmoid function acting on the linear outputs of
the SVM classifiers, w; is the weight (or relevance) of the " classifier
determined by upgrade Eq. 25. If the quality of the upgrade is mea-
sured by the mean square error of the estimations then the following
approximate weight upgrade can be derived by using Eq. 25 (see, e.g.,

[110] for details):
(27) Aw; = ax (Tep1 + 7% V(sir1) — V(st)) * o(output,).

This approximate upgrade was used in our RL engine.

Features and learning to search

A target document and its environment are illustrated in Fig. 26.
The basic assumption is that the environment of one one target doc-
ument may provide good yardsticks for other target documents. A

hand-waving argument can be given as follows. Documents are linked
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List 1
empty
List 2 w1
Frequencies non Frequencies
of Word(1) ) empty of Word(1) W2
Word(n) Word(n)

FIGURE 27. SVM based document classifiers (a) Classifica-
tion of distance from document using SVM classifiers, (b) Value
estimation based on SVM classifiers.

to each other. Links are made by those, for whom the document has
value; who can make use of the target document. These links form the
one-step contexrt of the document. The one-step context, in turn, may
be characteristic to the document. This is the idea behind CFC. The
CFC [35] method develops classifiers of the environment. The k** clas-
sifier is trained on documents k-steps away from known documents and
it is supposed to say ‘yes’ if — according to its decision surface — there
is a target document k-steps away from the actual site/document. If
more than one classifier outputs ‘yes’ signal then the best classifier is
considered. The CFC idea with SVM classifiers is shown in Fig. 27(a).
The CFC maintains a list of visited links ordered according to the
SVM classification. One of the links belonging to the best non-empty
classifier is visited next.

CFC and RL: Learning to search
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The CFC method has a prewired property, namely the strict ordering
of contexts. This prewiring can be criticized on the following ground:
(i) The number of documents that we have at our disposal could be
small for training the CFC classifiers. (ii) The context might vary
drastically from site to site and from time to time. In turn, classification
could be weak.

Reinforcement learning offers a key here. If this prewiring is per-
fect, still, we could learn it. There is nothing to loose here, provided
that learning is fast. Utilizing RL, we gain the adaptive property. If
the prewiring is imperfect then proper weights will be derived by the
learning algorithm.

The outputs of the SVMs can be saved. These outputs can be used
to estimate the value of a document at any instant. In turn, the value
based ordering of the documents requires minor computation and can
be made at each step. This continuous reordering of the documents
replaces the prewired ordering of the documents of the CFC method.
The new architecture is shown in Fig. 27(b). In our studies 5 SVMs
were used to classify up to the 5™ neighborhood. This number was
limited to 5 because of the high branching ratio on the web. Smaller
numbers are not needed for RL: RL can determine if a feature (the

output of the SVM) is irrelevant or not. If it is irrelevant the weight
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F1GURE 28. Search pattern for breadth first crawler. Search

was launched from neutral site. A site is called neutral if there is

very few target document in its environment. (For further details,

see text.) Diameter of open circles is proportional to the number

of target documents downloaded.
assigned by RL becomes zero. This effect can be seen in many cases in
our computer studies.

Results and discussion

The CfP problem has been studied. Search pattern at the initial
phase for the breadth first method is shown in Fig. 28.

Search patterns for the context focused crawler and the crawler us-
ing RL based value estimation are shown in Fig. 16 and Fig. 16. The
launching site of these searches was a ‘neutral site’, a relatively large
site containing few CfP documents

(http://www.inf.elte.hu). We consider this type of launching im-

portant for web crawling, it simulates the case when mail lists are not
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FIGURE 29. Search pattern for context focused crawler.
Search was launched from neutral site. Diameter of open circles is
proportional to the number of target documents downloaded.

F1GURE 30. Search pattern for CFC and reinforcement
learning

Search was launched from neutral site. Diameter of open circles is
proportional to the number of target documents downloaded.

available (to us) and traditional search engines are not satisfactory.
Results indicate that yes, this site has a minor number of target docu-

ments in the neighborhood.
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‘Scale’ of Figs. (16,16) differs from that of Fig. 28. ‘True surfed scale’
would be reflected by normalizing to edge thickness. Radius of open
circles is proportional to the number of downloaded target documents.
The CFC is somewhat better in the initial phase than the breadth
first method. Later portions of search history show that CFC becomes
considerably better than the breadth first method.

Quantitative comparisons are shown in Fig. 16. According to the
figure, upon downloading 20,000 documents, the number of hits were
about 50, 200, and 1000 for the breadth first, the CFC and CFC based
RL crawlers, respectively. These launches were conducted about the
same time. We shall demonstrate that the large difference between
CFC and CFC based RL method is mostly due to the adaptive prop-
erties of the RL crawler.

There are two site types that have been investigated. The first site
type is the neutral site that has been described before, the second site
is a mail server on conferences. Target documents were rewarded by
‘1 unit’, whereas downloaded and non-target documents were punished
by 0.01 unit. Also, for some examples there are runs separated by one
month (March, 2001). Most summer conferences made announcements

during this month. It is important to make a distinction between the
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Comparisons between Crawlers
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FIGURE 31. Results of breadth first, CFC and CFC based
RL methods.

initial phase of the search and the later phases. The initial phase of
the search (the first 200 downloaded documents) are shown in Fig. 32.

According to this figure downloading is very efficient from the mail
server site in each occasion. The non-adapting crawler utilizing aver-
aged weights is superior to all the other crawlers that are learning —
almost all downloaded documents are hits. Close to this site there are
many relevant documents and the ‘breadth first crawler’ is also effi-
cient here. Nevertheless, the non-adapting CFC crawler outperforms
the breadth first crawler in this domain. Launching from neutral sites
is inefficient at this early phase. Breadth first method finds no hit close
to the neutral site (not shown in the figure). Middle phase of the search

is shown in Fig. 33.
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Need for Adaptation

No adaptation (*)
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FiGURE 32. Comparisons between ‘neutral’ and mail

server sites in the initial phase. Reward and punishment

are given in the legend of the figure. Differences between similar

types are due to differences in launching time. The largest time

difference between similar types is one month. Neutral site

(thin lines): http://www.inf.elte.hu. Mail list (thick lines):
http://www.newcastle.research.ec.org/cabernet/events/msg00043.html.
Search with ‘no adaptation’ (dotted line) was launched from mail

list and used average weights from another search that was

launched from the same place.
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F1GURE 33. Comparisons between ‘neutral’ and mail server
sites up to 2000 documents. Same conditions as in Fig. 32
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Launching from Different Site Types
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FiGUurRe 34. Comparisons between different sites up to
20,000 documents. Same conditions as in Figs. 32 and 33.
Search with ‘no adaptation’ used average weights from another
search that was launched from the same place (denoted by *)

Middle phase has a somewhat different message. Sometimes, launches
from the neutral site may become very successful, and search without
adaptation is still competitive. Launches from the mail list look about
the same.

Search results up to 20,000 documents are shown in Fig. 34. We note,
that the 2,000 to 20,000 range can be a typical one for the number of
documents found by search engines.

This graph contains results from a subset of the runs that we have
executed. These runs were launched from different sites; the neu-
tral site and the mail list, as well as a third type, the ‘conference’

site: http:// www.informatik.uni-freiburg.de/ index.en.html.
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This site is known to be involved in organizing conferences. Adapting
crawlers collected a large number of documents from all site types and
during the whole time region. The time region covered by these ex-
amples was one month. The rate of collection was between 2%-5%. In
contrast, the collection rate is close to 100% for the non-adaptive CFC
launched from the mail list site and it is better than the breadth first
method here. Lack of adaptation, however, prohibits this crawler to
find new target documents in cca. 17,000 downloads in spite of the fact
that in the early phase this crawler was the most successful and that

other documents exist on the web. Let us summarize these points:

(1) Identical conditions give rise to very different results one month
later.

(2) Starting from a neutral site can be as effective as starting from
a mailing list.

(3) The lack of adaptation is a serious drawback even if the crawler

is launched from a mailing list.

The importance of adaptation is also demonstrated by the RL weights
assigned during search. These weights are shown in the following fig-
ures. Figure 35 depicts the weights belonging to the different SVMs.
At the beginning of the search the weights are almost perfectly ordered;

the largest weight is given to the SVM that predicts relevant document
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Weight Adaptation
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FIGURE 35. Change of weights of SVMs in value estimation
for mail site.

‘one step away’ whereas the 4 and the 5* SVMs have the smallest
weights. That is, RL ‘pays attention’ to the first SVM and pays less
attention to the others. This order changes as time goes on. There
are regions (around 800 on the horizontal axis) where most attention
is paid to the fifth SVM and smaller attention is paid to the others.
The order of importance changes again when a rich region is found; the
importance of the first SVM recovers quickly and, in turn, crawling is
dominated by the weight of the first SVM.

‘Weight history’ is different at the neutral site (Fig. 36). Up to about
100 downloads very few relevant documents were found at this site.

The value of weight of the 5% SVM is slightly positive, whereas that
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Weight Adaptation
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FIGURE 36. Change of weights of SVMs in value estimation
for ‘neutral’ site.

of the others are negative. The 1°* and the 2" SVMs are considered
the ‘worst’, the weights belonging to these classifiers are large negative
numbers. Situation changes quickly when a rich region is found. It is
typical that the weight of the 5" SVM is ranked second. That is, the
ordering of the neighborhoods — which was used for the training of the
SVMs - can be misleading in other parts of the internet. The infor-
mation contained by the ‘context’ (the environment) of the nodes can
be used, if the values for these classifiers are estimated and corrected
on-line.

Conclusions
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We have suggested a novel method for web search. The method
makes use of combinations of two popular Al techniques, support vec-
tor machines (SVM) and reinforcement learning (RL). The method has
a few adapting parameters that can be optimized during the search.
This parameterization helps the crawler that can adapt to different
parts of the web. The value estimation used the SVM classifiers are in
linear mode: The outputs of the SVMs, together, formed a set of yard-
sticks for the estimation of the distance of the actual site from target
documents. Preliminary studies indicate that SVM with CfP BoWs
performs well on very different problems, like searching for documents
published recently about books on Harry Potter. The point is that the
few RL parameters can be trained by rewarding for target documents
quickly. There are many ways one may try to improve our method.
RL has many different formulations all of which could be applied here.
Most promising are the approaches that can take into account (many)
different criteria in the search objective [42, 44, 38]. Alas, RL methods
are capable of extracting features [114] that may improve the quality

of the search during the ‘flight’.
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17. APPENDIX E: LIST OF SOFTWARE COMPONENTS

The software have several components from two different groups.
The first group is made of the Matlab software. This group is either
from the internet (the Bayes Network Toolbox) or has been developed
by us.

(1) Bayes Network Toolbox: Kevin Murphy’s toolbox for Matlab.

It must be in the Matlab’s path.

(2) Learntree: Our Probabilistic Tree Model and Mixture of Trees

software. It must be in the Matlab’s path.

(3) Tests: Matlab software used to produce the results in Tech Re-

port

(4) Data: The datasets used in our tests

The other group contains JAVA components.

(1) TreeBuilder JAVA class
(2) Probability JAVA class

(3) XML2Tree class

These components can be found on the CD-ROM. Both components
are commented by their own comment system, Matlab has its help
system using the header of the files, whereas we used Javadoc for com-

menting JAVA routines.
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